2,271 research outputs found

    A rapid, chromatography-free route to substituted acridine–isoalloxazine conjugates under microwave irradiation

    Get PDF
    Microwave irradiation was applied to a sequence of condensation reactions from readily available 9-chloroacridines to provide a range of novel acridine–isoalloxazine conjugates. The combination of these two moieties, both of biological interest, was achieved by a chromatography free route

    The Technology of Skill Formation

    Full text link

    Effects of the selective kainate receptor antagonist ACET on altered sensorimotor gating in a genetic model of reduced NMDA receptor function

    Get PDF
    The pathophysiology of schizophrenia may involve reduced NMDA receptor function. Accordingly, experimental models of NMDA receptor hypofunction may be useful for testing potential new antipsychotic agents and for characterizing neurobiological abnormalities relevant to schizophrenia. We demonstrated previously that mice under-expressing the NR1 subunit of the NMDA receptor show supersensitive behavioral responses to kainic acid and that a kainate receptor antagonist normalized altered behaviors in the mutant mice (NR1neo/neo). The present work examined effects of another selective kainate receptor antagonist, (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl-methylpyrimidine-2,4-dione (ACET), on altered behavioral phenotypes in the genetic model of NMDA receptor hypofunction. ACET, at a dose of 15 mg/kg, partially reversed the deficits in prepulse inhibition produced by the mutation. The 15 mg/kg dose of ACET was also effective in reversing behavioral effects of the selective kainate agonist ATPA. However, ACET did not significantly reduce the increased locomotor activity and rearing behavior observed in the NR1neo/neo mice. These findings show that a highly selective kainate receptor antagonist can affect the deficits in sensorimotor gating in the NR1neo/neo mice. The results also provide further support for the idea that selective kainate receptor antagonists could be novel therapeutic candidates for schizophrenia

    Nutritional Content, Phytochemical Profiling, and Physical Properties of Buckwheat (Fagopyrum esculentum) Seeds for Promotion of Dietary and Food Ingredient Biodiversity

    Get PDF
    Acknowledgments: The authors would like to thank to Donna Henderson, Lynn Pirie, and Jodie Park, from the Rowett Institute Analytical Department for doing the proximate, amino acid, and ICPMS analysis; and to the funders: Scottish Government′s Rural and Environment Science and Analytical Services Division (RESAS) and Ministério da Educação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brazil (CAPES). Funding: This research was funded by the Scottish Government′s Rural and Environment Science and Analytical Services Division (RESAS) as part of the Strategic Research Programme 2016–2021 Crops 2022, 2, 3 303 and Ministério da Educação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES, Brazil.Peer reviewedPublisher PD

    Seizure responses and induction of Fos by the NMDA Agonist (tetrazol-5-yl)glycine in a genetic model of NMDA receptor hypofunction

    Get PDF
    Effects of the direct NMDA agonist (tetrazol-5-yl)glycine (TZG) were examined in a genetic mouse model of reduced NMDA receptor function. In this model, expression of the NR1 subunit is reduced but not eliminated and the mice are therefore designated as NR1 hypomorphic. Previous work suggested that the reduced NR1 subunit expression produced a functional subsensitivity as judged by a blunted Fos induction response to a sub-seizure dose of TZG. In the present study seizure threshold doses of TZG were tested in the wild type and mutant mice. Surprisingly, there was no difference in the seizure sensitivity between the wild type mice and mice presumed to express very low levels of the NR1 subunit. An extensive neuroanatomical analysis of Fos induction was conducted after the threshold seizure doses of TZG. The results demonstrate that some brain regions of the NR1 -/- mice exhibit much lower Fos induction in comparison to the NR1 +/+ mice. These regions include hippocampus, amygdala, and cerebral cortical regions. However, in other regions, similar induction of Fos was observed in both genotypes in response to the NMDA agonist. Regions showing similar Fos induction in the NR1 +/+ and NR1 -/- mice include the lateral septum, nucleus of the solitary tract, and medial hypothalamic regions. The results suggest that the NMDA receptor hypofunction in the NR1 -/- mice is not global but regionally specific and that subcortical structures are responsible for the seizure-inducing effects of TZG

    Increased sensitivity to kainic acid in a genetic model of reduced NMDA receptor function

    Get PDF
    The pathophysiology of schizophrenia may involve reduced NMDA receptor function and experimental models of NMDA receptor hypofunction have proven useful for characterizing neurobiological abnormalities potentially relevant to schizophrenia. The present study assessed behavioral responses and induction of Fos after administration of kainic acid to wild type mice (NR1+/+) and mice with genetically reduced NMDA receptor expression (NR1neo/neo). At a dose of 20 mg/kg kainic acid induced lethal seizures in 100% of the NR1neo/neo mice tested but produced no lethal seizures in the wild type mice. The NR1neo/neo mice also exhibited enhanced behavioral responses to kainic acid at a dose of 15 mg/kg but no lethal seizures were produced by this dose. A greater induction of Fos was observed in neocortical and limbic cortical regions of the NR1neo/neo compared to NR1+/+ mice after administration of 15 mg/kg kainic acid. In contrast, there were no differences between the genotypes in kainic acid induced of Fos in the amygdala, hippocampus, lateral septum, and nucleus accumbens. In order to determine if altered behavioral phenotypes of the NR1neo/neo mice could be related to increased sensitivity of kainate receptors to endogenous glutamate, effects of the highly selective kainate antagonist LY382884 were examined. The kainate antagonist reduced the exaggerated acoustic startle responses, deficits in prepulse inhibition of acoustic startle, and motor hyperactivity in the NR1neo/neo mice. These findings suggest that selective kainate receptor antagonists could be novel therapeutic candidates for schizophrenia

    Differential Effects of Chronic Antidepressant Treatment on Swim Stress- and Fluoxetine-Induced Secretion of Corticosterone and Progesterone

    Get PDF
    Hypersecretion of cortisol occurs in numerous patients with major depression and normalizes with clinical recovery during the course of chronic antidepressant treatment. These clinical data suggest that investigation of the effects of antidepressant treatments on the regulation of the brain-pituitary-adrenal axis may assist in elucidating the therapeutic basis of antidepressant actions. In the present investigation, both swim stress and acute fluoxetine challenge increased release of corticosterone and progesterone to reflect an activation of the brain pituitary-adrenal axis. The effects of chronic antidepressant treatment (21 days) on corticosterone and progesterone secretion induced by these challenges were investigated. Chronic fluoxetine treatment (5 mg/kg/day) completely blocked the increased secretion of corticosterone and progesterone in response to the acute fluoxetine challenge. Chronic treatment with desipramine, imipramine or amytriptyline (15 mg/kg/day) also markedly attenuated fluoxetine-induced corticosterone and progesterone secretion. However, chronic treatment with the monoamine oxidase inhibitors, phenelzine (5 mg/kg) and tranylcypromine (5 mg/kg), did not affect this hormonal response to acute fluoxetine challenge. Plasma levels of fluoxetine after acute challenge were not significantly different for the various chronic antidepressant treatment conditions from the chronic saline controls; therefore, an increase in the metabolism of fluoxetine can not explain the antagonism of the fluoxetine-induced hormonal response after chronic antidepressant treatment. In contrast to the effects of selected antidepressants on acute fluoxetine-induced steroid release, chronic treatment with imipramine (20 mg/kg/day), fluoxetine (5 mg/kg/day) or phenelzine (5 mg/kg) did not significantly alter this swim stress-induced corticosterone or progesterone secretion. Because chronic fluoxetine and tricyclic antidepressant drugs blocked the acute action of fluoxetine to increase adrenal cortical secretion, but did not alter swim stress-induced secretion of these steroids, we propose that distinct neurochemical mechanisms control fluoxetine and swim stress-induced steroid release. We speculate that the substantial adaptive response to those chronic antidepressant treatments, which minimize the effect of acute fluoxetine challenge to increase in corticosterone and progesterone secretion, may be relevant to the therapeutic actions of these drugs

    Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress

    Get PDF
    Mice with reduced expression of the NR1 subunit of the NMDA receptor (NR1 hypomorphic mice) display altered behavioral phenotypes that may relate to behavioral characteristics of schizophrenia. Altered phenotypes in the NR1 hypomorphs include marked deficits in species-typical behavioral interactions in tests of social aggression and social affiliation. To gain insight into neuroanatomical circuits disrupted by reduced NMDA receptor function, the present work compared regional brain activation in NR1 hypomorphic mice and their wild type controls after a resident-intruder test. Induction of Fos protein was used as an index of neuronal activation. Wild type mice exhibited robust induction of Fos in select brain regions, including specific nuclei of the hypothalamus and amygdala, lateral septum, and widespread regions of the cerebral cortex. Although the behavioral patterns were different for male and female mice, neuroanatomical patterns of Fos induction were remarkably similar for the two sexes. To determine socially specific components of Fos induction by the resident-intruder test, responses were compared for mice assessed in a test of general arousal and stress involving forced swim. Some common brain regions were activated by both tests but regionally specific differences were also found. The NR1 hypomorphic mice tested in the resident-intruder procedure displayed distinctly different behavioral interactions compared to the wild type mice and exhibited a significantly blunted Fos response in almost all brain regions. The mutant mice also exhibited reduced Fos in response to swim stress in specific brain regions. These data suggest that the NR1 hypomorphic mice have functional activation deficits in response to social challenge and swim stress

    6-Hydroxydopamine Treatments Enhance Behavioral Responses to Intracerebral Microinjection of D1- and D2-Dopamine Agonists into Nucleus Accumbens and Striatum Without Changing Dopamine Antagonist Binding

    Get PDF
    Behavioral responses to D1 and D2-dopamine agonists are enhanced when these agonists are administered systemically to 6-hydroxydopamine (6-OHDA)-lesioned rats. In the present investigation, microinjection of SKF-38393, a D1-dopamine agonist, into the nucleus accumbens of adult rats lesioned as neonates with 6-OHDA produced a dose-related increase in locomotor activity that was enhanced markedly compared to control. LY-171555, a D2-agonist, elicited less locomotor activity than did SKF-38393 after microinjection into this site. Administration of SKF-38393 or LY-171555 into the nucleus accumbens did not increase locomotion in unlesioned rats at the doses administered to lesioned animals. In adult-6-OHDA-lesioned rats, microinjection of SKF-38393 into the nucleus accumbens also increased locomotion more than did LY-171555. As described previously, systemic administration of SKF-38393 produced little locomotion in adult-6-OHDA-lesioned rats, whereas LY-171555 produced a markedly enhanced response. Administration of SKF-38393 or LY-171555 into the caudate nucleus of neonatally and adult-6-OHDA-lesioned rats produced negligible locomotor activity, but did induce stereotypic behaviors similar to those observed after systemic treatment with these drugs. Stereotypic behaviors occurred to a greater degree in the 6-OHDA-lesioned rats than in unlesioned controls. A regional specificity for certain behaviors induced by dopamine agonist administration was observed. In spite of the enhanced behavioral responses of D1 and D2-dopamine agonists after microinjection into the brain of 6-OHDA-lesioned rats, binding of [3H]spiperone (D2-receptor antagonist ligand) and [3H]SCH 23390 (D1-receptor antagonist ligand) to tissue from striatum and nucleus accumbens was not altered significantly. In contrast to this lack of change in binding characteristics in 6-OHDA-lesioned rats, blockade of dopaminergic transmission with haloperidol treatment caused an elevation of [3H]spiperone binding sites in striatum without affecting affinity for the site. However, chronic haloperidol treatment did not alter significantly [3H]SCH 23390 binding to striatal membranes. These latter findings suggest that chronic dopamine receptor blockade need not produce the same adaptive mechanisms as destruction of dopamine-containing neurons. Thus, a change in receptor characteristics as measured by dopamine antagonist binding does not account for the behavioral supersensitivity observed after D1- and D2-dopamine agonist administration to neonatally or adult-6-OHDA-treated rats
    corecore