19,326 research outputs found

    Automorphisms of Partially Commutative Groups II: Combinatorial Subgroups

    Full text link
    We define several "standard" subgroups of the automorphism group Aut(G) of a partially commutative (right-angled Artin) group and use these standard subgroups to describe decompositions of Aut(G). If C is the commutation graph of G, we show how Aut(G) decomposes in terms of the connected components of C: obtaining a particularly clear decomposition theorem in the special case where C has no isolated vertices. If C has no vertices of a type we call dominated then we give a semi-direct decompostion of Aut(G) into a subgroup of locally conjugating automorphisms by the subgroup stabilising a certain lattice of "admissible subsets" of the vertices of C. We then characterise those graphs for which Aut(G) is a product (not necessarily semi-direct) of two such subgroups.Comment: 7 figures, 63 pages. Notation and definitions clarified and typos corrected. 2 new figures added. Appendix containing details of presentation and proof of a theorem adde

    String Breaking in Four Dimensional Lattice QCD

    Get PDF
    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O(a2a^2) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R ≥\geq approximately 1 fm.Comment: 16 pages, 5 figures, Latex (deleted extraneous eps figure file

    Discovery of pulsations in the X-ray transient 4U 1901+03

    Full text link
    We describe observations of the 2003 outburst of the hard-spectrum X-ray transient 4U 1901+03 with the Rossi X-ray Timing Explorer. The outburst was first detected in 2003 February by the All-Sky Monitor, and reached a peak 2.5-25 keV flux of 8x10^-9 ergs/cm^2/s (around 240 mCrab). The only other known outburst occurred 32.2 yr earlier, likely the longest presently known recurrence time for any X-ray transient. Proportional Counter Array (PCA) observations over the 5-month duration of the 2003 outburst revealed a 2.763 s pulsar in a 22.58 d orbit. The detection of pulsations down to a flux of 3x10^-11 ergs/cm^2/s (2.5-25 keV), along with the inferred long-term accretion rate of 8.1x10^-11 M_sun/yr (assuming a distance of 10 kpc) suggests that the surface magnetic field strength is below ~5x10^11 G. The corresponding cyclotron energy is thus below 4 keV, consistent with the non-detection of resonance features at high energies. Although we could not unambiguously identify the optical counterpart, the lack of a bright IR candidate within the 1' RXTE error circle rules out a supergiant mass donor. The neutron star in 4U 1901+03 probably accretes from the wind of a main-sequence O-B star, like most other high-mass binary X-ray pulsars. The almost circular orbit e=0.036 confirms the system's membership in a growing class of wide, low-eccentricity systems in which the neutron stars may have received much smaller kicks as a result of their natal supernova explosions.Comment: 7 pages, 6 figures, accepted by ApJ. Very minor addition in response to referee's comment; updated author affiliatio

    Where is SGR1806-20?

    Get PDF
    We apply a statistical method to derive very precise locations for soft gamma repeaters using data from the interplanetary network. We demonstrate the validity of the method by deriving a 600 arcsec^2 error ellipse for SGR1900+14 whose center agrees well with the VLA source position. We then apply it to SGR1806-20, for which we obtain a 230 arcsec^2 error ellipse, the smallest burst error box to date. We find that the most likely position of the source has a small but significant displacement from that of the non-thermal core of the radio supernova remnant G10.0-0.3, which was previously thought to be the position of the repeater. We propose a different model to explain the changing supernova remnant morphology and the positions of the luminous blue variable and the bursting source.Comment: 12 pages and 2 color figures, accepted for publication in Astrophysical Journal Letter

    Fast spectroscopic variations on rapidly-rotating, cool dwarfs. 3: Masses of circumstellar absorbing clouds on AB Doradus

    Get PDF
    New time-resolved H alpha, Ca II H and K and Mg II h and k spectra of the rapidly-rotating K0 dwarf star AB Doradus (= HD 36705). The transient absorption features seen in the H alpha line are also present in the Ca II and Mg II resonance lines. New techniques are developed for measuring the average strength of the line absorption along lines of sight intersecting the cloud. These techniques also give a measure of the projected cloud area. The strength of the resonance line absorption provides useful new constraints on the column densities, projected surface areas, temperatures and internal turbulent velocity dispersions of the circumstellar clouds producing the absorption features. At any given time the star appears to be surrounded by at least 6 to 10 clouds with masses in the range 2 to 6 x 10(exp 17) g. The clouds appear to have turbulent internal velocity dispersions of order 3 to 20 km/s, comparable with the random velocities of discrete filamentary structures in solar quiescent prominences. Night-to-night changes in the amount of Ca II resonance line absorption can be explained by changes in the amplitude of turbulent motions in the clouds. The corresponding changes in the total energy of the internal motions are of order 10(exp 29) erg per cloud. Changes of this magnitude could easily be activated by the frequent energetic (approximately 10(exp 34) erg) x ray flares seen on this star

    Limits on the Boron Isotopic Ratio in HD 76932

    Full text link
    Data in the 2090 A B region of HD 76932 have been obtained at high S/N using the HST GHRS echelle at a resolution of 90,000. This wavelength region has been previously identified as a likely candidate for observing the B11/B10 isotopic splitting. The observations do not match a calculated line profile extremely well at any abundance for any isotopic ratio. If the B abundance previously determined from observations at 2500 A is assumed, the calculated line profile is too weak, indicating a possible blending line. Assuming that the absorption at 2090 A is entirely due to boron, the best-fit total B abundance is higher than but consistent with that obtained at 2500 A, and the best-fit isotopic ratio (B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due to B and there is an unknown blend, the best-fit isotopic ratio may be closer to 1:1. Future observations of a similar metal-poor star known to have unusually low B should allow us to distinguish between these two possibilities. The constraints that can be placed on the isotopic ratio based on comparisons with similar observations of HD 102870 and HD 61421 (Procyon) are also discussed.Comment: Accepted for Nov 1998 Ap

    Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian-Emperor volcanic chain

    Get PDF
    Helium isotopes are a robust geochemical tracer of a primordial mantle component in hot spot volcanism. The high 3He/4He (up to 35 RA, where RA is the atmospheric 3He/4He ratio of 1.39 × 10−6) of some Hawaiian Island volcanism is perhaps the classic example. New results for picrites and basalts from the Hawaiian-Emperor seamount chain indicate that the hot spot has produced high 3He/4He lavas for at least the last 76 million years. Picrites erupted at 76 Ma have 3He/4He (10–14 RA), which is at the lower end of the range for the Hawaiian Islands but still above the range of modern mid-ocean ridge basalt (MORB; 6–10 RA). This was at a time when hot spot volcanism was occurring on thin lithosphere close to a spreading ridge and producing lava compositions otherwise nearly indistinguishable from MORB. After the hot spot and spreading center diverged during the Late Cretaceous, the hot spot produced lavas with significantly higher 3He/4He (up to 24 RA). Although 3He/4He ratios stabilized at relatively high values by 65 Ma, other chemical characteristics such as La/Yb and 87Sr/86Sr did not reach and stabilize at Hawaiian-Island-like values until ~45 Ma. Our limited 3He/4He record for the Hawaiian hot spot shows a poor correlation with plume flux estimates (calculated from bathymetry and residual gravity anomalies [Van Ark and Lin, 2004]). If 3He is a proxy for the quantity of primordial mantle material within the plume, then the lack of correlation between 3He/4He and calculated plume flux suggests that variation in primordial mantle flux is not the primary factor controlling total plume flux

    Measurement of the SOC State Specific Heat in ^4He

    Get PDF
    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tlambda. All the helium in the sample is then at the same reduced temperature tSOC = ((T[sub SOC] - T[sub lambda])/T[sub lambda]) and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C[del]T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C[del]T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tlambda the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tlambda, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)]

    An X-Ray Jet from a White Dwarf - Detection of the Collimated Outflow from CH Cygni with Chandra

    Full text link
    Most symbiotic stars consist of a white dwarf accreting material from the wind of a red giant. An increasing number of these objects have been found to produce jets. Analysis of archival Chandra data of the symbiotic system CH Cygni reveals faint extended emission to the south, aligned with the optical and radio jets seen in earlier HST and VLA observations. CH Cygni thus contains only the second known white dwarf with an X-ray jet, after R Aquarii. The X-rays from symbiotic-star jets appear to be produced when jet material is shock-heated following collision with surrounding gas, as with the outflows from some protostellar objects and bipolar planetary nebulae.Comment: 4 & a bit pages, 4 figures, accepted by ApJL; uses emulateapj.cls and revtex4. Minor changes following referees report, & shortened to meet page limi
    • …
    corecore