22 research outputs found

    Understanding the gas adsorption kinetics of Langmuir-Schaefer porphyrin films using two comparative sensing systems

    Get PDF
    This study investigated Langmuir-Schaefer (LS) films of a free base porphyrin 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) as sensors to detect acetic acid and methylamine. Such films are known to adsorb VOCs, resulting in a color change and a swelling of the film resulting in a thickness increase for the film. The adsorption kinetics of this process were studied using two different techniques, namely UV–vis absorbance spectroscopy and surface plasmon resonance (SPR), to investigate the color change and film thickness change respectively when exposed to acetic acid and methylamine vapors. These two techniques were used to allow a comparative study to be made of the color change and film swelling in order to enhance understanding of the interaction between the thin films and both acidic and basic vapor molecules. The transfer process of the LS thin films was performed using the constant transfer pressure of 5 mNm−1. EHO films with different numbers of layers were fabricated and exposed to 855 ppm acetic acid and 900 ppm methylamine vapor. Sensor responses were recorded using both UV–vis and surface plasmon resonance techniques. The EHO films exhibited high sensitivity and fast responses using both techniques. Using two different detection systems permitted the investigation of the interaction mechanism with a quantitative, comparative study with the aim of obtaining an enhanced understanding of the nature of the interaction of the organic vapors with the sensor. The interaction between EHO and the analytes can be considered in terms of three processes which are surface adsorption, diffusion and desorption process. Although both the optical techniques have distinct sensing principles, similar vapor interaction characteristics can be distinguished in both sets of experiments. For both techniques the response to the acid was stronger than the response to methylamine. However, apart from this difference in the magnitude of the responses the interaction with the acid and base were remarkably similar. The sensitivity of the sensor is largely independent of the measurement system

    A solution concentration dependent transition from self-stratification to lateral phase separation in spin-cast PS:d-PMMA thin films

    Get PDF
    Thin films with a rich variety of different nano-scale morphologies have been produced by spin casting solutions of various concentrations of PS:d-PMMA blends from toluene solutions. During the spin casting process specular reflectivity and off-specular scattering data were recorded and ex situ optical and atomic force microscopy, neutron reflectivity and ellipsometry have all been used to characterise the film morphologies. We show that it is possible to selectively control the film morphology by altering the solution concentration used. Low polymer concentration solutions favour the formation of flat in-plane phase-separated bi-layers, with a d-PMMA-rich layer underneath a PS-rich layer. At intermediate concentrations the films formed consist of an in-plane phase-separated bi-layer with an undulating interface and also have some secondary phase-separated pockets rich in d-PMMA in the PS-rich layer and vice versa. Using high concentration solutions results in laterally phase-separated regions with sharp interfaces. As with the intermediate concentrations, secondary phase separation was also observed, especially at the top surface

    An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications

    Get PDF
    Photovoltaics made from organic–inorganic hybrid perovskite semiconductors are attracting significant interest due to their ability to harvest sunlight with remarkable efficiency. The presence of lead in the best performing devices raises concerns regarding their toxicity, a problem that may create barriers to commercialization. Hybrid perovskites with reduced lead content are being investigated to overcome this issue and here we evaluate bismuth as a possible lead substitute. For a series of hybrid perovskite films with the general composition CH3NH3(PbyBi1−y)I3−xClx, we characterize their optical and structural properties using UV–Vis spectroscopy, scanning electron microscopy and grazing incidence wide angle X-ray scattering. We show that they form crystalline structures with an optical band gap, around 2 eV for CH3NH3BiI3. However, preliminary solar cell tests show low power conversion efficiencies (<0.01%) due to both incomplete precursor conversion and material de-wetting from the substrate. The overall outcome is severely limited photocurrent. With current processing methods the general applicability of hybrid bismuth perovskites in photovoltaics may be limited

    Perovskite crystallization dynamics during spin-casting : an In situ wide-angle x-ray scattering study

    Get PDF
    In situ wide-angle X-ray scattering (WAXS) has been measured during the spin coating process used to make the precursor films required for the formation of thin films of perovskite. A customized hollow axis spin coater was developed to permit the scattered X-rays to be collected in transmission geometry during the deposition process. Spin coating is the technique most commonly used in laboratories to make thin perovskite films. The dynamics of spin-casting MAPbI3–xClx and FAPbI3–xClx films have been investigated and compared to investigate the differences between the dynamics of MAPbI3–xClx and FAPbI3–xClx film formation. In particular, we focus on the crystallization dynamics of the precursor film formation. When casting MAPbI3–xClx, we observed relatively fast 1D crystallization of the intermediate product MA2PbI3Cl. There was an absence of the desired perovskite phase formed directly; it only appeared after an annealing step that converted the MA2PbI3Cl to MAPbI3. In contrast, slower crystallization via a 3D precursor was observed for FAPbI3–xClx film formation compared to MAPbI3–xClx. Another important finding was that some FAPbI3–xClx perovskite was generated directly during spin-casting before annealing. These findings indicate that there are significant differences between the crystallization pathways for these two perovskite materials. These are likely to explain the differences in the lifetimes of the resulting perovskite solar cell devices produced using FA and MA cations

    Monitoring the Formation of a CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite during Thermal Annealing Using X-Ray Scattering

    Get PDF
    Grazing incidence wide and small angle X-ray scattering (GIWAXS and GISAXS) measurements have been used to study the crystallization kinetics of the organolead halide perovskite CH3NH3PbI3-xClx during thermal annealing. In situ GIWAXS measurements recorded during annealing are used to characterize and quantify the transition from a crystalline precursor to the perovskite structure. In situ GISAXS measurements indicate an evolution of crystallite sizes during annealing, with the number of crystallites having sizes between 30 and 400 nm increasing through the annealing process. Using ex situ scanning electron microscopy, this evolution in length scales is confirmed and a concurrent increase in film surface coverage is observed, a parameter crucial for efficient solar cell performance. A series of photovoltaic devices are then fabricated in which perovskite films have been annealed for different times, and variations in device performance are explained on the basis of X-ray scattering measurements

    Quantitative Analysis of the Molecular Dynamics of P3HT:PCBM Bulk Heterojunction

    Get PDF
    The optoelectronic properties of blends of conjugated polymers and small molecules are likely to be affected by the molecular dynamics of the active layer components. We study the dynamics of regioregular poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends using molecular dynamics (MD) simulation on time scales up to 50 ns and in a temperature range of 250–360 K. First, we compare the MD results with quasi-elastic neutron-scattering (QENS) measurements. Experiment and simulation give evidence of the vitrification of P3HT upon blending and the plasticization of PCBM by P3HT. Second, we reconstruct the QENS signal based on the independent simulations of the three phases constituting the complex microstructure of such blends. Finally, we found that P3HT chains tend to wrap around PCBM molecules in the amorphous mixture of P3HT and PCBM; this molecular interaction between P3HT and PCBM is likely to be responsible for the observed frustration of P3HT, the plasticization of PCBM, and the partial miscibility of P3HT and PCBM

    Profile retrieval of a buried periodic structure using spin echo grazing incidence neutron scattering

    Get PDF
    When the neutron scattering technique, Spin Echo Resolved Grazing Incidence Scattering (SERGIS) concept, was originally put forward by Rekveldt [Physica B 1135, 234–236 (1997)] and Felcher et al. [Proc. SPIE 4785, 164 (2002)], they recognized that the specular scattering and the off-specular scattering could be spatially separated due to the tight neutron beam collimation in the scattering plane, a necessity for any reflectometry experiment. In this Letter, we show that it is possible to make large area measurements of periodic grating structures using SERGIS in a number of interesting scenarios. The SERGIS data can be analyzed using a dynamical theory, which makes it possible to effectively retrieve the lateral profile of a commercial periodic diffraction grating. Interestingly, this is still the case even when that grating is buried beneath a highly deuterated poly(methyl methacrylate-D8) polymer layer. We also clearly demonstrate that the maximum sensitivity to lateral structures is achieved when the specular reflection from the grating is excluded from the data analysis, demonstrating a feature of SERGIS that was proposed over two decades ago

    Machine learning approach for electric vehicle availability forecast to provide vehicle-to-home services

    Get PDF
    In this study, we propose a machine learning (ML) model to predict the availability of an electric vehicle (EV) providing vehicle to home (V2H) services. Electric vehicles are able to store and give back energy directly to consumers and/or the grid using V2H and/or vehicle to grid (V2G) technologies. However, there is a limited understanding of what impact vehicle availability has on the its capacity to engage in such services. Using five different vehicle usage profiles, classified by the number of trips made per week, the machine learning model proposed is used to predict the availability of an EV. An optimisation model is then used on each profile to obtain the minimum electricity bill for each profile class assuming V2H service provision. PV generation providing power to the house was also considered. The ML model had an accuracy of over 85% and R2 value of 0.78 in predicting the location and distance travelled for the EV respectively. Final results showed that the less an EV is used for travelling, the greater its availability to participate in V2H services. Also, all categories of EV user benefited from reduced power bills when deploying V2H. An electricity cost reduction of at least 46% on average was obtained when V2H is implemented with an agile electricity price structure regardless of the level of vehicle usage

    Improved efficiency in organic solar cells via conjugated polyelectrolyte additive in the hole transporting layer

    Get PDF
    An anionic conjugated polyelectrolyte poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-alt-phenylene)- ran-(4,7-di-2-thienyl-2,1,3-benzothiadiazole-alt-phenylene)] which exhibits good solubility in water was synthesised via Suzuki-cross coupling. This conjugated polyelectrolyte was used as an additive in the hole transporting layer within organic photovoltaic devices. There is an efficiency gain as a result of an improved carrier generation and charge transport across the interface into the hole transport layer when the work function of the hole transport later is well matched to the active layer of the solar cell. The best performances were achieved using 5 mg ml1 of the polyelectrolyte additive added to the hole transport layer solution in which case the average power conversion efficiency increased from 4.63% for reference devices without any additive to 5.26% when the additive is present which is a 13% improvement. The reproducibility of device performance was also significantly improved with the variation in fill factor, short circuit current and open circuit voltage all improving when the additive is present

    In−situ monitoring Poly(3-hexylthiophene) nanowire formation and shape evolution in solution via small angle neutron scattering

    Get PDF
    The crystallization of poly(3-hexylthiophene) (P3HT) to form nanowires has attracted considerable interest because this process significantly increases the hole mobility when compared to amorphous P3HT, leading to improved performance in photovoltaic and other organic electronic devices. However, full characterization of the crystallization self-assembly of the polymer chains in solution has not been achieved yet, due to limited use of not destructive techniques. Here, we investigate the ageing-driven formation and evolution of regioregular (rr) P3HT nanostructures in chlorobenzene solution using small angle neutron scattering (SANS) and UV–Vis spectroscopy. We have monitored how the shape of the rr-P3HT aggregates evolves. The initial states for rr-P3HT chains are the random coils, which straighten to form rods. These subsequently π - π stack to form 2D lamellae, which further stack to create nanowires. The formation of nanowires is promoted both by the length of ageing and by low temperatures (). Temperatures above reverse the formation of nanowires. Additionally, atomic force microscopy (AFM) and grazing incidence wide angle x-ray scattering (GIWAXS) reveal that the nanowires can be successfully aligned during deposition by off-axis spin coating. Finally, the anisotropic conductivity of the aligned rr-P3HT nanowire films is reported. This is significant for applications such as gas sensing or organic thin film transistors, where increased conductivity and controlled nanostructure are desirable
    corecore