303 research outputs found

    A novel RBF-based predictive tool for facial distraction surgery in growing children with syndromic craniosynostosis

    Get PDF
    PURPOSE: Predicting changes in face shape from corrective surgery is challenging in growing children with syndromic craniosynostosis. A prediction tool mimicking composite bone and skin movement during facial distraction would be useful for surgical audit and planning. To model surgery, we used a radial basis function (RBF) that is smooth and continuous throughout space whilst corresponding to measured distraction at landmarks. Our aim is to showcase the pipeline for a novel landmark-based, RBF-driven simulation for facial distraction surgery in children. METHODS: An individual's dataset comprised of manually placed skin and bone landmarks on operated and unoperated regions. Surgical warps were produced for 'older' monobloc, 'older' bipartition and 'younger' bipartition groups by applying a weighted least-squares RBF fitted to the average landmarks and change vectors. A 'normalisation' warp, from fitting an RBF to craniometric landmark differences from the average, was applied to each dataset before the surgical warp. The normalisation was finally reversed to obtain the individual prediction. Predictions were compared to actual post-operative outcomes. RESULTS: The averaged change vectors for all groups showed skin and bone movements characteristic of the operations. Normalisation for shape-size removed individual asymmetry, size and proportion differences but retained typical pre-operative shape features. The surgical warps removed the average syndromic features. Reversing the normalisation reintroduced the individual's variation into the prediction. The mid-facial regions were well predicted for all groups. Forehead and brow regions were less well predicted. CONCLUSIONS: Our novel, landmark-based, weighted RBF can predict the outcome for facial distraction in younger and older children with a variety of head and face shapes. It can replicate the surgical reality of composite bone and skin movement jointly in one model. The potential applications include audit of existing patient outcomes, and predicting outcome for new patients to aid surgical planning

    Finite element method for the design of implants for temporal hollowing

    Get PDF
    Temporal indentations are the most impacting craniofacial complication after coronal flap dissection. It is mainly due to a temporal fat pad or temporalis muscle dissection. Because of the great improvements achieved recently in CAD-CAM-aided surgery and the possibility of performing accurate pre-surgical virtual planning, it is now possible to correct it with a customised virtual approach. Furthermore, advancements in material science have allowed surgeons to rely on biocompatible materials like PEEK (showing a low complication and recurrence rate) for the manufacturing of patient-specific implants. We hereby describe our experience on a case of secondary and corrective surgery after a fronto-orbital remodelling, in which we used PEEK implants designed by CAD and optimized by finite element modelling

    Terrestrial species adapted to sea dispersal: Differences in propagule dispersal of two Caribbean mangroves

    Full text link
    A central goal of comparative phylogeography is to understand how species‐specific traits interact with geomorphological history to govern the geographic distribution of genetic variation within species. One key biotic trait with an immense impact on the spatial patterns of intraspecific genetic differentiation is dispersal. Here, we quantify how species‐specific traits directly related to dispersal affect genetic variation in terrestrial organisms with adaptations for dispersal by sea, not land—the mangroves of the Caribbean. We investigate the phylogeography of white mangroves (Laguncularia racemosa, Combretaceae) and red mangroves (Rhizophora mangle, Rhizophoraceae) using chloroplast genomes and nuclear markers (thousands of RAD‐Seq loci) from individuals throughout the Caribbean. Both coastal tree species have viviparous propagules that can float in salt water for months, meaning they are capable of dispersing long distances. Spatially explicit tests of the role of ocean currents on patterning genetic diversity revealed that ocean currents act as a mechanism for facilitating dispersal, but other means of moving genetic material are also important. We measured pollen‐ vs. propagule‐mediated gene flow and discovered that in white mangroves, seeds were more important for promoting genetic connectivity between populations, but in red mangroves, the opposite was true: pollen contributed more. This result challenges our concept of the importance of both proximity to ocean currents for moving mangrove seeds and the extent of long‐distance pollen dispersal. This study also highlights the importance of spatially explicit quantification of both abiotic (ocean currents) and biotic (dispersal) factors contributing to gene flow to understand fully the phylogeographic histories of species.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/1/mec14894-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/2/mec14894-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/3/mec14894_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/4/mec14894.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/5/mec14894-sup-0002-FigS2.pd

    Three-Dimensional Handheld Scanning to Quantify Head-Shape Changes in Spring-Assisted Surgery for Sagittal Craniosynostosis

    Get PDF
    Three-dimensional (3D) imaging is an important tool for diagnostics, surgical planning, and evaluation of surgical outcomes in craniofacial procedures. Gold standard for acquiring 3D imaging is computed tomography that entails ionizing radiations and, in young children, a general anaesthesia. Three-dimensional photographic imaging is an alternative method to assess patients who have undergone calvarial reconstructive surgery. The aim of this study was to assess the utility of 3D handheld scanning photography in a cohort of patients who underwent spring-assisted correction surgery for scaphocephaly. Pre- and postoperative 3D scans acquired in theater and at the 3-week follow-up in clinic were postprocessed for 9 patients. Cephalic index (CI), head circumference, volume, sagittal length, and coronal width over the head at pre-op, post-op, and follow-up were measured from the 3D scans. Cephalic index from 3D scans was compared with measurements from planar x-rays. Statistical shape modeling (SSM) was used to calculate the 3D mean anatomical head shape of the 9 patients at the pre-op, post-op, and follow-up. No significant differences were observed in the CI between 3D and x-ray. Cephalic index, volume, and coronal width increased significantly over time. Mean shapes from SSM visualized the overall and regional 3D changes due to the expansion of the springs in situ. Three-dimensional handheld scanning followed by SSM proved to be an efficacious and practical method to evaluate 3D shape outcomes after spring-assisted cranioplasty in individual patients and the population

    The Esthetic Perception of Morphological Severity in Scaphocephalic Patients is Correlated With Specific Head Geometrical Features

    Get PDF
    OBJECTIVE: To investigate the relationship between perception of craniofacial deformity, geometric head features, and 3D head shape analyzed by statistical shape modeling (SSM). PATIENTS: A total of 18 unoperated patients with scaphocephaly (age  =  5.2  ±  1.1m)-6 were followed-up after spring-assisted cranioplasty (SAC) (age  =  9.6  ±  1.5m)-and 6 controls (age  =  6.7  ±  2.5m). MAIN OUTCOME MEASURES: 3D head shapes were retrieved from 3D scans or computed tomography (CTs). Various geometrical features were measured: anterior and posterior prominence, take-off angle, average anterior and posterior lateral and horizontal curvatures, cranial index (CI) (cranial width over length), and turricephaly index (TI) (cranial height over length). SSM and principal component analysis (PCA) described shape variability. All models were 3D printed; the perception of deformity was blindly scored by 9 surgeons and 1 radiologist in terms of frontal bossing (FB), occipital bulleting (OB), biparietal narrowing (BN), low posterior vertex (LPV), and overall head shape (OHS). RESULTS: A moderate correlation was found between FB and anterior prominence (r  =  0.56, P < .01) and take-off angle (r  =  - 0.57, P < .01). OB correlated with average posterior lateral curvature (r  =  0.43, P < 0.01) similarly to BPN (r  =  0.55, P < .01) and LPV (r  =  0.43, P < .01). OHS showed strong correlation with CI (r  =   - 0.68, P < .01) and TI (r  =  0.63, P< .01). SSM Mode 1 correlated with OHS (r  =  0.66, p < .01) while Mode 3 correlated with FB (r  =   - 0.58, P < .01). CONCLUSIONS: Esthetic cranial appearance in craniofacial patients is correlated to specific geometric parameters and could be estimated using automated methods such as SSM

    Correlation of Intracranial Volume With Head Surface Volume in Patients With Multisutural Craniosynostosis

    Get PDF
    Intracranial volume (ICV) is an important parameter for monitoring patients with multisutural craniosynostosis. Intracranial volume measurements are routinely derived from computed tomography (CT) head scans, which involves ionizing radiation. Estimation of ICV from head surface volumes could prove useful as 3D surface scanners could be used to indirectly acquire ICV information, using a non-invasive, non-ionizing method.Pre- and postoperative 3D CT scans from spring-assisted posterior vault expansion (sPVE) patients operated between 2008 and 2018 in a single center were collected. Patients were treated for multisutural craniosynostosis, both syndromic and non-syndromic. For each patient, ICV was calculated from the CT scans as carried out in clinical practice. Additionally, the 3D soft tissue surface volume (STV) was extracted by 3D reconstruction of the CT image soft tissue of each case, further elaborated by computer-aided design (CAD) software. Correlations were analyzed before surgery, after surgery, combined for all patients and in syndrome subgroups.Soft tissue surface volume was highly correlated to ICV for all analyses: r = 0.946 preoperatively, r = 0.959 postoperatively, and r = 0.960 all cases combined. Subgroup analyses for Apert, Crouzon-Pfeiffer and complex craniosynostosis were highly significant as well (P < 0.001).In conclusion, 3D surface model volumes correlated strongly to ICV, measured from the same scan, and linear equations for this correlation are provided. Estimation of ICV with just a 3D surface model could thus be realized using a simple method, which does not require radiations and therefore would allow closer monitoring in patients through multiple acquisitions over time

    A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling

    Get PDF
    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face

    Design and manufacturing of a patient-specific nasal implant for congenital arhinia: Case report

    Get PDF
    Arhinia (congenital absence of the nose) is a congenital rare disease, which has been reported in less than 60 cases in the literature. It consists of the absence of external nose, nasal cavities and olfactory apparatus and is generally associated with midline defects, microphthalmia, blepharophimosis and hypotelorism. Aesthetic problems as well as associated functional anomalies can potentially impact on the development and interpersonal relationships of the child at a later stage in life. Arhinia requires extensive management in early life in order to ensure airway patency and protection by means of tracheostomy, and to allow adequate pharyngeal and feeding function to the child. Aesthetic issues are managed with reconstructive surgery or an external prosthesis. There is no previous description in Literature of internal prosthetic devices used to sequentially shape soft tissues in complex reconstruction. We present an example of design and manufacturing of a bespoke nose implant produced by means of 3D printing and directly assessed on-table by means of 3D surface scanning
    corecore