3 research outputs found

    Lithiumā€ion mobility in Li6B18(Li3N) and Li vacancy tuning in the solid solution Li6B18(Li3N)1āˆ’x(Li2O)x

    Get PDF
    All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The hostā€“guest structure Li6B18(Li3N) comprises large hexagonal pores filled with urn:x-wiley:14337851:media:anie202213962:anie202213962-math-0001 Li7N] strands that represent a perfect cutout from the structure of Ī±-Li3N. Variable-temperature 7Liā€…NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19ā€…kJā€‰molāˆ’1 and thus much lower than pristine Li3N. The formation of the solid solution of Li6B18(Li3N) and Li6B18(Li2O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3N and Li2O

    Derivatization of Phosphine Ligands with Bulky Deltahedral <i>Zintl</i> Clustersī—øSynthesis of Charge Neutral Zwitterionic Tetrel Cluster Compounds [(Ge<sub>9</sub>{Si(TMS)<sub>3</sub>}<sub>2</sub>)<sup><i>t</i></sup>Bu<sub>2</sub>P]M(NHC<sup>Dipp</sup>) (M: Cu, Ag, Au)

    No full text
    Reactions of silylated clusters [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> or [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>]<sup>2āˆ’</sup> with dialkylhalophosphines R<sub>2</sub>PCl (Cy, <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) at ambient temperature yield the first tetrel <i>Zintl</i> cluster compounds bearing phosphine moieties. Varying reactivity of the dialkylhalophosphines toward the silylated clusters is observed depending on the bulkiness of the phosphineā€™s alkyl substituents and on the number of hypersilyl groups at the tetrel cluster. Reactions between phosphines with small cyclohexyl- (Cy) or isopropyl- (<sup><i>i</i></sup>Pr) groups and the tris-silylated cluster [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> yield the novel neutral cluster compounds [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>PR<sub>2</sub>] (R: Cy (<b>1</b>), <sup><i>i</i></sup>Pr (<b>2</b>)) with discrete Geā€“P <i>exo</i> bonds. By contrast, the bulkier phosphine <sup><i>t</i></sup>Bu<sub>2</sub>PCl does not react with [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> due to steric crowding. However, the reaction with the bis-silylated cluster [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>]<sup>2</sup><sup>āˆ’</sup> yields the novel cluster compound [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>]<sup>āˆ’</sup> (<b>3</b>). Subsequent reactions of compound <b>3</b> with NHC<sup>Dipp</sup>MCl (M: Cu, Ag, Au) yield the charge neutral zwitterionic compounds [(Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>)<sup><i>t</i></sup>Bu<sub>2</sub>P]Ā­MĀ­(NHC<sup>Dipp</sup>) (M: Cu, Ag, Au) (<b>4</b>ā€“<b>6</b>), in which compound <b>3</b> acts as a phosphine ligand bearing a bulky tetrel <i>Zintl</i> cluster moiety. Compounds <b>4</b>ā€“<b>6</b> also represent the first uncharged examples for 3-fold substituted tetrel <i>Zintl</i> clusters

    Derivatization of Phosphine Ligands with Bulky Deltahedral <i>Zintl</i> Clustersī—øSynthesis of Charge Neutral Zwitterionic Tetrel Cluster Compounds [(Ge<sub>9</sub>{Si(TMS)<sub>3</sub>}<sub>2</sub>)<sup><i>t</i></sup>Bu<sub>2</sub>P]M(NHC<sup>Dipp</sup>) (M: Cu, Ag, Au)

    No full text
    Reactions of silylated clusters [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> or [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>]<sup>2āˆ’</sup> with dialkylhalophosphines R<sub>2</sub>PCl (Cy, <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) at ambient temperature yield the first tetrel <i>Zintl</i> cluster compounds bearing phosphine moieties. Varying reactivity of the dialkylhalophosphines toward the silylated clusters is observed depending on the bulkiness of the phosphineā€™s alkyl substituents and on the number of hypersilyl groups at the tetrel cluster. Reactions between phosphines with small cyclohexyl- (Cy) or isopropyl- (<sup><i>i</i></sup>Pr) groups and the tris-silylated cluster [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> yield the novel neutral cluster compounds [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>PR<sub>2</sub>] (R: Cy (<b>1</b>), <sup><i>i</i></sup>Pr (<b>2</b>)) with discrete Geā€“P <i>exo</i> bonds. By contrast, the bulkier phosphine <sup><i>t</i></sup>Bu<sub>2</sub>PCl does not react with [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>3</sub>]<sup>āˆ’</sup> due to steric crowding. However, the reaction with the bis-silylated cluster [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>]<sup>2</sup><sup>āˆ’</sup> yields the novel cluster compound [Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>]<sup>āˆ’</sup> (<b>3</b>). Subsequent reactions of compound <b>3</b> with NHC<sup>Dipp</sup>MCl (M: Cu, Ag, Au) yield the charge neutral zwitterionic compounds [(Ge<sub>9</sub>{SiĀ­(TMS)<sub>3</sub>}<sub>2</sub>)<sup><i>t</i></sup>Bu<sub>2</sub>P]Ā­MĀ­(NHC<sup>Dipp</sup>) (M: Cu, Ag, Au) (<b>4</b>ā€“<b>6</b>), in which compound <b>3</b> acts as a phosphine ligand bearing a bulky tetrel <i>Zintl</i> cluster moiety. Compounds <b>4</b>ā€“<b>6</b> also represent the first uncharged examples for 3-fold substituted tetrel <i>Zintl</i> clusters
    corecore