492 research outputs found

    Modulation of P-glycoprotein activity by acridones and coumarins from Citrus sinensis

    Get PDF
    Bioguided fractionation of the roots of Citrus sinensis (Rutaceae) led to the isolation and identification of five coumarins, namely, clausarin, suberosin, poncitrin, xanthyletin and thamnosmonin, seven acridones, namely, acrimarine B, 2-methoxycitpressine I, citpressine I, buntanine, acrimarine E, honyumine and acrimarine C, and one terpenoid, namely, limonin. Among these compounds, clausarin, 2-methoxycitpressine I and acrimarine E inhibited P-glycoprotein-mediated drug efflux in K562/R7 human leukemic cells over-expressing P-glycoprotein

    Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A

    Get PDF
    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport

    Cytosolic 5'-Nucleotidase II Interacts with the Leucin Rich Repeat of NLR Family Member Ipaf

    Get PDF
    IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzym

    Selective modulation of P-glycoprotein activity by steroidal saponines from Paris polyphylla

    Get PDF
    Bio-guided fractionation of the roots of Paris polyphylla (Trilliaceae), based on inhibition of P-glycoprotein-mediated daunorubicin efflux in K562/R7 cell line, led to isolation and identification of the three saponins 3-O-Rha(1 → 2)[Ara(1 → 4)]Glc-pennogenine, gracillin and polyphyllin D, and the two ecdysteroids 20-hydroxyecdysone and pinnatasterone. These compounds were tested for multidrug reversion on P-glycoprotein (ABCB1) with both drug-selected and transfected cell lines, and also on Breast Cancer Resistance Protein (BCRP/ABCG2). By contrast to a weak efficiency on BCRP, the three saponins displayed significant effects as inhibitors of P-glycoprotein-mediated drug efflux

    Inhibition of P-glycoprotein-mediated multidrug efflux by aminomethylene and ketomethylene analogs of reversins

    Get PDF
    Several aminomethylene analogs and a ketomethylene analog of reversins were synthesized in order to evaluate their ability to inhibit P-glycoprotein-mediated drug efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein. These analogs retained good activity compared to cyclosporin A and the original reversins

    Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1–XPF-mediated DNA repair

    Get PDF
    Purpose: The ERCC1–XPF 5′–3′ DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. Methods: We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein–protein interaction in cancer cells using proximity ligation assay. Results: Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. Conclusion: Our results confirm the feasibility of the approach of targeting the protein–protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds

    Structure–activity relationship of natural anetic coumarins inhibiting the multidrug transporter P-glycoproteind synth

    Get PDF
    A set of 32 natural and synthetic coumarins were tested in order to evaluate their activity on human leukemic cells (K562/R7) overexpressing P-glycoprotein (P-gp). Their ability to reduce the P-gp-mediated drug efflux of daunorubicin out of cells was evaluated at 10 μM. Four natural compounds, previously isolated from Calophyllum dispar (Clusiaceae) and substituted by a common α-(hydroxyisopropyl)dihydrofuran moiety, exhibited a significant inhibitory effect on P-gp when compared to the positive control cyclosporin A. A 3D-quantitative structure–activity relationship (3D-QSAR) analysis of the coumarins was performed using the biological results obtained by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of P-gp. Results showed a favorable electrostatic and steric volume, like the α-(hydroxyisopropyl)dihydrofuran moiety, beside C5–C6 or C7–C8 positions. In addition, the analysis revealed an important hydrophobic, neutral charge group, like phenyl, in position C4 on the coumarinic ring
    • …
    corecore