2 research outputs found

    Electrochemical behaviour of ternary Ni-Zn-P thin films deposition on steel substrate

    Get PDF
    572-577Ternary Ni-Zn-P alloy thin films  with a thickness of 15-20 μm are considered as a replacement for cadmium sacrificial coatings for anticorrosive protection of steel parts working in highly corrosive media. Anticorrosive Ni-Zn-P thin films has been electrochemically deposited from aqueous sulphate solutions on carbon steel substrate. The influence of bath composition (variable ZnSO4·7H2O contents) and electrodeposition type (potentiostatic or galvanostatic) on physical-chemical and corrosion characteristics of obtained films have been studied. Films are characterized by energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The corrosion tests are performed in 3% NaCl solution with optimal resulting values of -916.2 mV vs. saturated calomel electrode (SCE) for the corrosion potential and 13.4 μA·cm-2 for the corrosion current density. The calculated value for the corrosive attack protection efficiency is 67.7%

    Modeling and Characterization of Complex Concentrated Alloys with Reduced Content of Critical Raw Materials

    No full text
    The continuous development of society has increased the demand for critical raw materials (CRMs) by using them in different industrial applications. Since 2010, the European Commission has compiled a list of CRMs and potential consumption scenarios with significant economic and environmental impacts. Various efforts were made to reduce or replace the CRM content used in the obtaining process of high-performance materials. Complex concentrated alloys (CCAs) are an innovative solution due to their multitude of attractive characteristics, which make them suitable to be used in a wide range of industrial applications. In order to demonstrate their efficiency in use, materials should have improved recyclability, good mechanical or biocompatible properties, and/or oxidation resistance, according to their destination. In order to predict the formation of solid solutions in CCAs and provide the optimal compositions, thermodynamic and kinetic simulations were performed. The selected compositions were formed in an induction furnace and then structurally characterized with different techniques. The empirical results indicate that the obtained CCAs are suitable to be used in advanced applications, providing original contributions, both in terms of scientific and technological fields, which can open new perspectives for the selection, design, and development of new materials with reduced CRM contents
    corecore