628 research outputs found

    Nuclear collective dynamics within Vlasov approach

    Full text link
    We discuss, in an investigation based on Vlasov equation, the properties of the isovector modes in nuclear matter and atomic nuclei in relation with the symmetry energy. We obtain numerically the dipole response and determine the strength function for various systems, including a chain of Sn isotopes. We consider for the symmetry energy three parametrizations with density providing similar values at saturation but which manifest very different slopes around this point. In this way we can explore how the slope affects the collective response of finite nuclear systems. We focus first on the dipole polarizability and show that while the model is able to describe the expected mass dependence, A^{5/3}, it also demonstrates that this quantity is sensitive to the slope parameter of the symmetry energy. Then, by considering the Sn isotopic chain, we investigate the emergence of a collective mode, the Pygmy Dipole Resonance (PDR), when the number of neutrons in excess increases. We show that the total energy-weighted sum rule exhausted by this mode has a linear dependence with the square of isospin I=(N-Z)/A, again sensitive to the slope of the symmetry energy with density. Therefore the polarization effects in the isovector density have to play an important role in the dynamics of PDR. These results provide additional hints in the investigations aiming to extract the properties of symmetry energy below saturation.Comment: 7 pages, 6 figure

    Multi Hamilton-Jacobi quantization of O(3) nonlinear sigma model

    Get PDF
    The O(3) non-linear sigma model is investigated using multi Hamilton-Jacobi formalism. The integrability conditions are investigated and the results are in agreement with those obtained by Dirac's method. By choosing an adequate extension of phase space we describe the transformed system by a set of three Hamilton-Jacobi equations and calculate the corresponding action.Comment: 10 pages, LaTeX, to be published in Mod. Phys. Lett.

    THE IMPACT OF USING EQUIPMENT WITH DIGITAL CONTROL ON MODERN AGRICULTURE 4.0 - REVIEW

    Get PDF
    Lately, the widespread use and continuous improvement of machine tools has had a significant impact on productivity in the manufacturing industry since the Industrial Revolution. At the beginning of the new era of industrialization, the need to advance machine tools to a new level, which corresponds to the Industry 4.0 concept, must be recognized and addressed. Like the various stages of industrialization, machine tools have also gone through various stages of technological advances, namely Machine Tool 1.0, Machine Tool 2.0 and Machine Tool 3.0. Industry 4.0 advocates for a new generation of machines - Machine Tool 4.0. This paper describes some of the key and desired features of the implementation of intelligent machines such as numerically controlled lathes and milling machine tool centers integrated vertically and horizontally in order to achieve a modern, intelligent, autonomous and safer agriculture

    Back-to-back correlations of high p_T hadrons in relativistic heavy ion collisions

    Get PDF
    We investigate the suppression factor and the azimuthal correlation function for high pTp_T hadrons in central Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV by using a dynamical model in which hydrodynamics is combined with explicitly traveling jets. We study the effects of parton energy loss in a hot medium, intrinsic kTk_T of partons in a nucleus, and p⊄p_{\perp} broadening of jets on the back-to-back correlations of high pTp_T hadrons. Parton energy loss is found to be a dominant effect on the reduction of the away-side peaks in the correlation function.Comment: 4 pages, 4 figures; version to appear in Phys. Rev. Let

    Two-point functions for SU(3) Polyakov Loops near T_c

    Full text link
    We discuss the behavior of two point functions for Polyakov loops in a SU(3) gauge theory about the critical temperature, T_c. From a Z(3) model, in mean field theory we obtain a prediction for the ratio of masses at T_c, extracted from correlation functions for the imaginary and real parts of the Polyakov loop. This ratio is m_i/m_r = 3 if the potential only includes terms up to quartic order in the Polyakov loop; its value changes as pentic and hexatic interactions become important. The Polyakov Loop Model then predicts how m_i/m_r changes above T_c.Comment: 5 pages, no figures; reference adde

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde

    Chemical equilibration and thermal dilepton production from the quark gluon plasma at finite baryon density

    Get PDF
    The chemical equilibration of a highly unsaturated quark-gluon plasma has been studied at finite baryon density. It is found that in the presence of small amount of baryon density, the chemical equilibration for gluon becomes slower and the temperature decreases less steeply as compared to the baryon free plasma. As a result, the space time integrated yield of dilepton is enhanced if the initial temperature of the plasma is held fixed. Even at a fixed initial energy density, the suppression of the dilepton yields at higher baryo-chemical potential is compensated, to a large extent, by the slow cooling of the plasma.Comment: Latex, 19 pages, 8 postscript figures. To appear in Phys. Rev.

    Deconfinement in Matrix Models about the Gross--Witten Point

    Full text link
    We study the deconfining phase transition in SU(N) gauge theories at nonzero temperature using a matrix model of Polyakov loops. The most general effective action, including all terms up to two spatial derivatives, is presented. At large N, the action is dominated by the loop potential: following Aharony et al., we show how the Gross--Witten model represents an ultra-critical point in this potential. Although masses vanish at the Gross--Witten point, the transition is of first order, as the fundamental loop jumps only halfway to its perturbative value. Comparing numerical analysis of the N=3 matrix model to lattice simulations, for three colors the deconfining transition appears to be near the Gross--Witten point. To see if this persists for N >= 4, we suggest measuring within a window ~1/N^2 of the transition temperature.Comment: 22 pages, 7 figures; revtex4. A new Fig. 2 illustrates a strongly first order transition away from the GW point; discussion added to clarify relation to hep-th/0310285. Conclusions include a discussion of recent lattice data for N>3, hep-lat/0411039 and hep-lat/050200

    Thermal photons as a measure for the rapidity dependence of the temperature

    Get PDF
    The rapidity distribution of thermal photons produced in Pb+Pb collisions at CERN-SPS energies is calculated within scaling and three-fluid hydrodynamics. It is shown that these scenarios lead to very different rapidity spectra. A measurement of the rapidity dependence of photon radiation can give cleaner insight into the reaction dynamics than pion spectra, especially into the rapidity dependence of the temperature.Comment: 3 Figure

    Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives

    Full text link
    The classical fields with fractional derivatives are investigated by using the fractional Lagrangian formulation.The fractional Euler-Lagrange equations were obtained and two examples were studied.Comment: 9 page
    • 

    corecore