4 research outputs found

    Ongoing Development of a Series Bosch Reactor System

    Get PDF
    Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Boschbased carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse WaterGas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step

    Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions

    Get PDF
    Longduration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a SeriesBosch (SBosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an SBosch development test stand that incorporates two catalytic reactors in series including a Reverse WaterGas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Standalone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolithbased CFR are discussed
    corecore