11 research outputs found

    Neuroanatomical changes seen in MRI in patients with cerebral metastasized breast cancer after radiotherapy

    Full text link
    PURPOSE To quantify neuroanatomical changes using magnetic resonance imaging (MRI) in patients with cerebral metastasized breast cancer after brain radiotherapy (RT). METHODS Fifteen patients with breast cancer with brain metastases who underwent whole brain RT (WBR), radiosurgery (RS), and/or hypofractionated stereotactic treatment (STX) were examined at four time points (TPs). A total of 48 MRIs were available: prior to RT (TP1), 5-8 months after RT (TP2), 9-11 months after RT (TP3), and >20 months after RT (TP4). Using automatic segmentation, 25 subcortical structures were analyzed. Patients were split into three groups: STX (receiving STX and RS), RS (receiving RS only), and WBR (receiving WBR at least once). After testing for a normal distribution for all values using the Kolmogorov-Smirnov test, a two-sided paired t test was used to analyze volumetric changes. For those values that were not normally distributed, the nonparametric Mann-Whitney test was employed. RESULTS The left cerebellum white matter (p = 0.028), the right pallidum (p = 0.038), and the left thalamus (p = 0.039) significantly increased at TP2 compared to TP1. The third ventricle increased at all TPs (p = 0.034-0.046). The left choroid plexus increased at TP3 (p = 0.037) compared to TP1. The left lateral ventricle increased at TP3 (p = 0.012) and TP4 (p = 0.027). Total gray matter showed a trend of volume decline in STX and WBR groups. CONCLUSIONS These findings indicate that alterations in the volume of subcortical structures may act as a sensitive parameter when evaluating neuroanatomical changes and brain atrophy due to radiotherapy. Differences observed for patients who received STX and WBR, but not those treated with RS, need to be validated further

    Neuroanatomical changes seen in MRI in patients with cerebral metastasized breast cancer after radiotherapy

    Get PDF
    Purpose: To quantify neuroanatomical changes using magnetic resonance imaging (MRI) in patients with cerebral metastasized breast cancer after brain radiotherapy (RT). Methods: Fifteen patients with breast cancer with brain metastases who underwent whole brain RT (WBR), radiosurgery (RS), and/or hypofractionated stereotactic treatment (STX) were examined at four time points (TPs). A total of 48 MRIs were available: prior to RT (TP1), 5–8 months after RT (TP2), 9–11 months after RT (TP3), and >20 months after RT (TP4). Using automatic segmentation, 25 subcortical structures were analyzed. Patients were split into three groups: STX (receiving STX and RS), RS (receiving RS only), and WBR (receiving WBR at least once). After testing for a normal distribution for all values using the Kolmogorov-Smirnov test, a two-sided paired t test was used to analyze volumetric changes. For those values that were not normally distributed, the nonparametric Mann-Whitney test was employed. Results: The left cerebellum white matter ( p = 0.028), the right pallidum ( p = 0.038), and the left thalamus ( p = 0.039) significantly increased at TP2 compared to TP1. The third ventricle increased at all TPs ( p = 0.034–0.046). The left choroid plexus increased at TP3 ( p = 0.037) compared to TP1. The left lateral ventricle increased at TP3 ( p = 0.012) and TP4 ( p = 0.027). Total gray matter showed a trend of volume decline in STX and WBR groups. Conclusions: These findings indicate that alterations in the volume of subcortical structures may act as a sensitive parameter when evaluating neuroanatomical changes and brain atrophy due to radiotherapy. Differences observed for patients who received STX and WBR, but not those treated with RS, need to be validated further

    Acute radiodermatitis in modern adjuvant 3D conformal radiotherapy for breast cancer - the impact of dose distribution and patient related factors

    No full text
    Abstract Purpose This study was performed to evaluate skin toxicity during modern three-dimensional conformal radiotherapy (3D-CRT) and to evaluate the importance of dose distribution and patient related factors. Material and methods This study comprises 255 patients with breast cancer treated with tangential three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery between 03/2012 and 05/2017. The median prescribed dose was 50.4 Gy (range 50–50.4) and 92.2% of the patients received a sequential boost of 10–16 Gy. Adverse skin toxicities (according to CTCAE v. 4.03 and the occurrence of moist desquamations) were assessed at the end of treatment. The dose distribution in the skin (5 mm strip from the patient outline) and in the CTV was evaluated and correlated to the CTCAE scores and the occurrence of moist desquamation. Results 42.4% of the patients developed grade I, 55.7% grade II and 2% grade III skin toxicities. Moist desquamation was observed in 59 cases (23.1%). Dose distribution within the CTV and skin was homogenous with only small areas receiving 107% of the prescribed dose (median: 0.7 cm3) in the CTV and 105% (median 0.5 cm3) in the skin. On univariate analysis breast size as well as V107%(CTV), V105%(skin) and V80%(skin) correlated significantly (p < 0.05) with the incidence of skin toxicity. On multivariate analysis only V80%(skin) was confirmed as independent risk factor. Conclusion Modern tangential multi-field 3D-CRT allows a homogeneous dose distribution with similar skin toxicity as compared to studies performing IMRT. Dose distribution within the skin (V80%) might have a relevant impact on the severity of skin toxicity and the occurrence of moist desquamation
    corecore