103 research outputs found

    Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays

    Get PDF
    A sheet consisting of an array of small, aligned Dove prisms can locally (on the scale of the width of the prisms) invert one component of the ray direction. A sandwich of two such Dove-prism sheets that inverts both transverse components of the ray direction is a ray-optical approximation to the interface between two media with refractive indices +n and –n. We demonstrate the simulated imaging properties of such a Dove-prism-sheet sandwich, including a demonstration of pseudoscopic imaging

    Compressibility of a two-dimensional hole gas in tilted magnetic field

    Full text link
    We have measured compressibility of a two-dimensional hole gas in p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a tilted magnetic field. It turns out that the parallel component of magnetic field affects neither the spin splitting nor the density of states. We conclude that: (a) g-factor in the parallel magnetic field is nearly zero in this system; and (b) the level of the disorder potential is not sensitive to the parallel component of the magnetic field

    Thermodynamic Signature of a Two-Dimensional Metal-Insulator Transition

    Full text link
    We present a study of the compressibility, K, of a two-dimensional hole system which exhibits a metal-insulator phase transition at zero magnetic field. It has been observed that dK/dp changes sign at the critical density for the metal-insulator transition. Measurements also indicate that the insulating phase is incompressible for all values of B. Finally, we show how the phase transition evolves as the magnetic field is varied and construct a phase diagram in the density-magnetic field plane for this system.Comment: 4 pages, 4 figures, submitted to Physical Review Letters; version 1 is identical to version 2 but didn't compile properl

    Absence of Floating Delocalized States in a Two-Dimensional Hole Gas

    Full text link
    By tracking the delocalized states of the two-dimensional hole gas in a p-type GaAs/AlGaAs heterostructure as a function of magnetic field, we mapped out a phase diagram in the density-magnetic-field plane. We found that the energy of the delocalized state from the lowest Landau level flattens out as the magnetic field tends toward zero. This finding is different from that for the two-dimensional electron system in an n-type GaAs/AlGaAs heterostructure where delocalized states diverge in energy as B goes to zero indicating the presence of only localized states below the Fermi energy. The possible connection of this finding to the recently observed metal-insulator transition at B = 0 in the two-dimensional hole gas systems is discussed.Comment: 10 pages, 4 Postscript figures, To be published in Physical Review B (Rapid Communications) 58, Sept. 15, 199

    Physics of the Insulating Phase in the Dilute Two-Dimensional Electron Gas

    Full text link
    We propose to use the radio-frequency single-electron transistor as an extremely sensitive probe to detect the time-periodic ac signal generated by sliding electron lattice in the insulating state of the dilute two-dimensional electron gas. We also propose to use the optically-pumped NMR technique to probe the electron spin structure of the insulating state. We show that the electron effective mass and spin susceptibility are strongly enhanced by critical fluctuations of electron lattice in the vicinity of the metal-insulator transition, as observed in experiment.Comment: 5 pages, 2 figures, uses jetpl.cls (included). v.4: After publication in JETP Letters, two plots comparing theory and experiment are added, and a minor error is correcte

    Phase diagram of the integer quantum Hall effect in p-type Germanium

    Full text link
    We experimentally study the phase diagram of the integer quantized Hall effect, as a function of density and magnetic field. We used a two dimensional hole system confined in a Ge/SiGe quantum well, where all energy levels are resolved, because the Zeeman splitting is comparable to the cyclotron energy. At low fields and close to the quantum Hall liquid-to-insulator transition, we observe the floating up of the lowest energy level, but NO FLOATING of any higher levels, rather a merging of these levels into the insulating state. For a given filling factor, only direct transitions between the insulating phase and higher quantum Hall liquids are observed as a function of density. Finally, we observe a peak in the critical resistivity around filling factor one.Comment: 4 pages, 4 figures, some changes in the tex

    Biogenic weathering bridges the nutrient gap in pristine ecosystems - a global comparison

    Get PDF
    In many pristine ecosystems there seems to be negative nutrient budget existent, meaning that export exceeds the input received by aeolian deposition and physico-chemical weathering. Such ecosystems should degrade rather quickly, but are often found surprisingly stable on the long run. Our hypothesis was that this nutrient gap is an artefact caused by not considering the contribution of photoassimilatory-mediated biogenic weathering to the overall nutrient input, which might constitute an additional, energetically directed and demand driven pathway. Here, we firstly evaluated the evolution of mutualistic biogenic weathering along an Antarctic chronosequence and secondly compared the biogenic weathering rates under mycorrhized ecosystems over a global gradient of contrasting states of soil development. We found the ability to perform biogenic weathering increasing along its evolutionary development in photoautotroph-symbiont interaction and furthermore a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. Our results point towards a general alleviation of nutrient limitation at ecosystem scale via directional, energy driven and on-demand biogenic weathering

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy
    • …
    corecore