100 research outputs found
Large capacitance enhancement and negative compressibility of two-dimensional electronic systems at LaAlO/SrTiO interfaces
Novel electronic systems forming at oxide interfaces comprise a class of new
materials with a wide array of potential applications. A high mobility electron
system forms at the LaAlO/SrTiO interface and, strikingly, both
superconducts and displays indications of hysteretic magnetoresistance. An
essential step for device applications is establishing the ability to vary the
electronic conductivity of the electron system by means of a gate. We have
fabricated metallic top gates above a conductive interface to vary the electron
density at the interface. By monitoring capacitance and electric field
penetration, we are able to tune the charge carrier density and establish that
we can completely deplete the metallic interface with small voltages. Moreover,
at low carrier densities, the capacitance is significantly enhanced beyond the
geometric capacitance for the structure. In the same low density region, the
metallic interface overscreens an external electric field. We attribute these
observations to a negative compressibility of the electronic system at the
interface. Similar phenomena have been observed previously in semiconducting
two-dimensional electronic systems. The observed compressibility result is
consistent with the interface containing a system of mobile electrons in two
dimensions.Comment: 4 figures in main text; 4 figures in the supplemen
Compressibility of a two-dimensional hole gas in tilted magnetic field
We have measured compressibility of a two-dimensional hole gas in
p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a
tilted magnetic field. It turns out that the parallel component of magnetic
field affects neither the spin splitting nor the density of states. We conclude
that: (a) g-factor in the parallel magnetic field is nearly zero in this
system; and (b) the level of the disorder potential is not sensitive to the
parallel component of the magnetic field
The Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems
We investigate the space distribution of carrier density and the
compressibility of two-dimensional (2D) electron systems by using the local
density approximation. The strong correlation is simulated by the local
exchange and correlation energies. A slowly varied disorder potential is
applied to simulate the disorder effect. We show that the compressibility
anomaly observed in 2D systems which accompanies the metal-insulator transition
can be attributed to the formation of the droplet state due to disorder effect
at low carrier densities.Comment: 4 pages, 3 figure
Thermodynamic Signature of a Two-Dimensional Metal-Insulator Transition
We present a study of the compressibility, K, of a two-dimensional hole
system which exhibits a metal-insulator phase transition at zero magnetic
field. It has been observed that dK/dp changes sign at the critical density for
the metal-insulator transition. Measurements also indicate that the insulating
phase is incompressible for all values of B. Finally, we show how the phase
transition evolves as the magnetic field is varied and construct a phase
diagram in the density-magnetic field plane for this system.Comment: 4 pages, 4 figures, submitted to Physical Review Letters; version 1
is identical to version 2 but didn't compile properl
Physics of the Insulating Phase in the Dilute Two-Dimensional Electron Gas
We propose to use the radio-frequency single-electron transistor as an
extremely sensitive probe to detect the time-periodic ac signal generated by
sliding electron lattice in the insulating state of the dilute two-dimensional
electron gas. We also propose to use the optically-pumped NMR technique to
probe the electron spin structure of the insulating state. We show that the
electron effective mass and spin susceptibility are strongly enhanced by
critical fluctuations of electron lattice in the vicinity of the
metal-insulator transition, as observed in experiment.Comment: 5 pages, 2 figures, uses jetpl.cls (included). v.4: After publication
in JETP Letters, two plots comparing theory and experiment are added, and a
minor error is correcte
Universal flow diagram for the magnetoconductance in disordered GaAs layers
The temperature driven flow lines of the diagonal and Hall magnetoconductance
data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers
with different thicknesses. The flow lines are quantitatively well described by
a recent universal scaling theory developed for the case of duality symmetry.
The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a
spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator
or the QHE state at low temperatures happens along a semicircle separatrix
G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at
(G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let
Phase diagram of the integer quantum Hall effect in p-type Germanium
We experimentally study the phase diagram of the integer quantized Hall
effect, as a function of density and magnetic field. We used a two dimensional
hole system confined in a Ge/SiGe quantum well, where all energy levels are
resolved, because the Zeeman splitting is comparable to the cyclotron energy.
At low fields and close to the quantum Hall liquid-to-insulator transition, we
observe the floating up of the lowest energy level, but NO FLOATING of any
higher levels, rather a merging of these levels into the insulating state. For
a given filling factor, only direct transitions between the insulating phase
and higher quantum Hall liquids are observed as a function of density. Finally,
we observe a peak in the critical resistivity around filling factor one.Comment: 4 pages, 4 figures, some changes in the tex
- …