5 research outputs found
Renal structure and hypertension in autosomal dominant polycystic kidney disease
Renal structure and hypertension in autosomal dominant polycystic kidney disease. Hypertension has been reported to occur in 50 to 75 percent of subjects with autosomal dominant polycystic kidney disease (ADPKD) prior to the onset of marked renal insufficiency but concurrent with cystic deformation of the renal parenchyma. The present study was undertaken to examine whether the renal structural abnormalities are greater in hypertensive (HBP) versus normotensive (NBP) male and female patients with ADPKD who were matched within gender groups for age, body surface area, serum creatinine concentration (males HBP 1.2 ± 0.02 vs. NBP 1.1 ± 0.03 mg/dl, NS; females HBP 0.9 ± 0.03 vs. NBP 0.9 ± 0.02 mg/dl, NS) and creatinine clearance (males HBP 100 ± 3 vs. NBP 108 ± 3 ml/min/1.73 m2, NS; females HBP 97 ± 3 vs. NBP 96 ± 2 ml/min/1.73 m2, NS). Renal volume was significantly greater in the HBP compared to the NBP group (males HBP 624 ± 47 vs. NBP 390 ± 43 cm3, P < 0.0005; females HBP 466 ± 32 vs. NBP 338 ± 24 cm3, P < 0.002). Since increased renal volume is due to increased cysts, the results indicate that the early high incidence of hypertension in ADPKD correlates with the renal structural abnormalities in this disorder
The QuinteT Recruitment Intervention supported five randomized trials to recruit to target: a mixed-methods evaluation
ObjectiveTo evaluate the impact of the Quintet Recruitment Intervention (QRI) on recruitment in challenging randomized controlled trials (RCTs) that have applied the intervention. The QRI aims to understand recruitment difficulties, and then implements ‘QRI-actions’ to address these as recruitment proceeds.Study Design and SettingA mixed-methods study, comprising: a) before-and-after comparisons of recruitment rates and numbers of patients approached, and b) qualitative case studies, including documentary analysis and interviews with RCT investigators.ResultsFive UK-based publicly-funded RCTs were included in the evaluation. All recruited to target. RCT2 and RCT5 both received up-front pre-recruitment training before the intervention was applied. RCT2 did not encounter recruitment issues and recruited above target from its outset. Recruitment difficulties, particularly communication issues, were identified and addressed through QRI-actions in RCTs 1, 3, 4 and 5. Randomization rates significantly improved post-QRI-action in RCTs 1,3, and 4. QRI-actions addressed issues with approaching eligible patients in RCTs 3 and 5, which both saw significant increases in patients approached. Trial investigators reported that the QRI had unearthed issues they had been unaware of, and reportedly changed their practices post QRI-action.ConclusionThere is promising evidence to suggest the QRI can support recruitment to difficult RCTs. This needs to be substantiated with future controlled evaluations