5 research outputs found

    Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines

    No full text
    A series of 3-benzoyl imidazo[1,2-a]pyrimidines, obtained from N-heteroarylformamidines in good yields, was tested in silico and in vitro for binding and inhibition of seven Candida species (Candida albicans (ATCC 10231), Candida dubliniensis (CD36), Candida glabrata (CBS138), Candida guilliermondii (ATCC 6260), Candida kefyr, Candida krusei (ATCC 6358) and Candida tropicalis (MYA-3404)). To predict binding mode and energy, each compound was docked in the active site of the lanosterol 14α-demethylase enzyme (CYP51), essential for fungal growth of Candida species. Antimycotic activity was evaluated as the 50% minimum inhibitory concentration (MIC50) for the test compounds and two reference drugs, ketoconazole and fluconazole. All test compounds had a better binding energy (range: −6.11 to −9.43 kcal/mol) than that found for the reference drugs (range: 48.93 to −6.16 kcal/mol). In general, the test compounds showed greater inhibitory activity of yeast growth than the reference drugs. Compounds 4j and 4f were the most active, indicating an important role in biological activity for the benzene ring with electron-withdrawing substituents. These compounds show the best MIC50 against C. guilliermondii and C. glabrata, respectively. The current findings suggest that the 3-benzoyl imidazo[1,2-a]pyrimidine derivatives, herein synthesized by an accessible methodology, are potential antifungal drugs

    Three-Component Synthesis of 2-Amino-3-cyano-4H-chromenes, In Silico Analysis of Their Pharmacological Profile, and In Vitro Anticancer and Antifungal Testing

    No full text
    Chromenes are compounds that may be useful for inhibiting topoisomerase and cytochrome, enzymes involved in the growth of cancer and fungal cells, respectively. The aim of this study was to synthesize a series of some novel 2-amino-3-cyano-4-aryl-6,7-methylendioxy-4H-chromenes 4a–o and 2-amino-3-cyano-5,7-dimethoxy-4-aryl-4H-chromenes 6a–h by a three-component reaction, and test these derivatives for anticancer and antifungal activity. Compounds 4a and 4b were more active than cisplatin (9) and topotecan (7) in SK-LU-1 cells, and more active than 9 in PC-3 cells. An evaluation was also made of the series of compounds 4 and 6 as potential antifungal agents against six Candida strains, finding their MIC50 to be less than or equal to that of fluconazole (8). Molecular docking studies are herein reported, for the interaction of 4 and 6 with topoisomerase IB and the active site of CYP51 of Candida spp. Compounds 4a–o and 6a–h interacted in a similar way as 7 with key amino acids of the active site of topoisomerase IB and showed better binding energy than 8 at the active site of CYP51. Hence, 4a–o and 6a–h are good candidates for further research, having demonstrated their dual inhibition of enzymes that participate in the growth of cancer and fungal cells
    corecore