4 research outputs found

    Conformational Changes Followed by Complete Unzipping of DNA Double Helix by Charge-Tuned Gold Nanoparticles

    No full text
    The complete unzipping of DNA double helix by small size gold nanoparticles having weakly positive surface charge has been monitored using ensemble and single molecule fluorescence resonance energy transfer (smFRET) techniques. We believe, as the gold nanoparticles have positive charge on the surface, the DNA and nanoparticles were pulled together to form two single strands. The positively charged ligands on the nanoparticles attached to the DNA, and the hydrophobic ligands of the nanoparticles became tangled with each other, pulling the nanoparticles into clusters. At the same time, the nanoparticles pulled the DNA apart. The conformational changes followed by unzipping have been investigated for long DNA (calf thymus DNA) as well as for short DNA (∼40 base pair) using ensemble methods like circular dichroism (CD) spectroscopy, fluorescence intercalation assay, viscometric method, and single molecule FRET imaging. This observation not only reveals a new aspect in the field of nano–bio interface but also provides additional information about DNA dynamics

    Charge Density Modulated Shape-Dependent Electrocatalytic Activity of Gold Nanoparticles for the Oxidation of Ascorbic Acid

    No full text
    The electrocatalytic performance of noble metal nanoparticles depends upon their size, shape, composition, and crystalline facets. Here we demonstrate the shape-dependent electrocatalytic activity of Au nanoparticles toward ascorbic acid oxidation in acidic medium, wherein the catalysis is strongly influenced by the shape of the nanoparticles. The synthesis of (popcorn, tetrapod, and bipod shaped) Au nanoparticles was carried out using a systematic variation of the surfactant concentrations based on the seed-mediated growth technique at room temperature. Due to the facile electrostatic interaction of the positively charged Au nanoparticles with glassy carbon electrode, the modification of the surface with variable-shaped Au nanoparticles is accomplished without involving any binding agents. Among variable-shaped face-centered cubic (fcc) crystalline AuNPs, bipod-shaped Au nanoparticles (GNBipd) exhibit a superior electrocatalytic performance over tetrapod-shaped (GNTepd) and popcorn-shaped (GNPop) nanoparticles as inferred from the differential pulse voltammetry and electrochemical impedance spectroscopy. The results have been explained by invoking the relative surface free energy (γ) with preferentially exposed crystal planes, relative surface area (<i>A</i>), zeta potential (ξ), and the curvature-induced charge density (σ<sub>q</sub>) at the apex for individual variable-shaped gold nanoparticles

    Effect of Intertip Coupling on the Plasmonic Behavior of Individual Multitipped Gold Nanoflower

    No full text
    We report here, the first experimental realization on the selective excitation of two closely lying tips from the same spherical core of a multitipped gold nanoparticle with flower-like morphology. This gives strong multipeaked resonance in the near-infrared region of the far-field emission spectra showing a clear signature of tip to tip coupling. The cathodoluminescence (CL) technique in a scanning electron microscope (SEM) combined with finite-difference time-domain (FDTD) simulation has helped us to identify the coupled plasmon modes to be originated from the interaction between two closely spaced tips with a narrow angular separation. Our analysis further estimates a range of angular separation between the tips that triggers the onset of the intertip coupling

    Development of a Triplet–Triplet Absorption Ruler: DNA- and Chromatin-Mediated Drug Molecule Release from a Nanosurface

    No full text
    Triplet–triplet (T–T) absorption spectroscopy has been used successfully as a molecular ruler to understand the actual release process of sanguinarine as a drug molecule from a gold nanoparticle surface in the presence of cell components, that is, DNA and chromatin. The obtained results have been verified by fluorescence and surface-enhanced Raman spectroscopy (SERS), and a plausible explanation has been put forward to describe the underestimation and overestimation of the percentage (%) of the release of drug molecules measured by fluorescence- and SERS-based techniques, respectively, over the highlighted T–T absorption spectroscopy. Because of the intrinsic nature of absorption, the reported T–T absorption spectroscopic assay overpowers fluorescence- and SERS-based assays, which are limited by the long-range interaction and nonlinear dependence of the concentration of analytes, respectively
    corecore