18 research outputs found

    Improving consensus structure by eliminating averaging artifacts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common structural biology methods (i.e., NMR and molecular dynamics) often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA) is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles.</p> <p>Results</p> <p>Herein, we describe a method to derive representative structures while limiting the number of artifacts. Our approach is based on a Monte Carlo simulation technique that drives a starting structure (an extended or a 'close-by' structure) towards the 'averaged structure' using a harmonic pseudo energy function. To assess the performance of the algorithm, we applied our approach to Cα models of 1364 proteins generated by the TASSER structure prediction algorithm. The average RMSD of the refined model from the native structure for the set becomes worse by a mere 0.08 Å compared to the average RMSD of the averaged structures from the native structure (3.28 Å for refined structures and 3.36 A for the averaged structures). However, the percentage of atoms involved in clashes is greatly reduced (from 63% to 1%); in fact, the majority of the refined proteins had zero clashes. Moreover, a small number (38) of refined structures resulted in lower RMSD to the native protein versus the averaged structure. Finally, compared to PULCHRA <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, our approach produces representative structure of similar RMSD quality, but with much fewer clashes.</p> <p>Conclusion</p> <p>The benchmarking results demonstrate that our approach for removing averaging artifacts can be very beneficial for the structural biology community. Furthermore, the same approach can be applied to almost any problem where averaging of 3D coordinates is performed. Namely, structure averaging is also commonly performed in RNA secondary prediction <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>, which could also benefit from our approach.</p

    L1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier

    Get PDF
    To understand enzyme functions, identifying the catalytic residues is a usual first step. Moreover, knowledge about catalytic residues is also useful for protein engineering and drug-design. However, to experimentally identify catalytic residues remains challenging for reasons of time and cost. Therefore, computational methods have been explored to predict catalytic residues. Here, we developed a new algorithm, L1pred, for catalytic residue prediction, by using the L1-logreg classifier to integrate eight sequence-based scoring functions. We tested L1pred and compared it against several existing sequence-based methods on carefully designed datasets Data604 and Data63. With ten-fold cross-validation, L1pred showed the area under precision-recall curve (AUPR) and the area under ROC curve (AUC) of 0.2198 and 0.9494 on the training dataset, Data604, respectively. In addition, on the independent test dataset, Data63, it showed the AUPR and AUC values of 0.2636 and 0.9375, respectively. Compared with other sequence-based methods, L1pred showed the best performance on both datasets. We also analyzed the importance of each attribute in the algorithm, and found that all the scores contributed more or less equally to the L1pred performance

    RF-NR: Random Forest Based Approach for Improved Classification of Nuclear Receptors

    No full text

    Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains

    No full text
    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors

    Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs

    No full text
    Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups. In this study, we developed a novel computational method named “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead

    The evolution of logic circuits for the purpose of protein contact map prediction

    No full text
    Predicting protein structure from sequence remains a major open problem in protein biochemistry. One component of predicting complete structures is the prediction of inter-residue contact patterns (contact maps). Here, we discuss protein contact map prediction by machine learning. We describe a novel method for contact map prediction that uses the evolution of logic circuits. These logic circuits operate on feature data and output whether or not two amino acids in a protein are in contact or not. We show that such a method is feasible, and in addition that evolution allows the logic circuits to be trained on the dataset in an unbiased manner so that it can be used in both contact map prediction and the selection of relevant features in a dataset

    CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes

    No full text
    Abstract Background The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. Results We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. Conclusions We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification

    Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems

    No full text
    The development of robust anomaly-based network detection systems, which are preferred over static signal-based network intrusion, is vital for cybersecurity. The development of a flexible and dynamic security system is required to tackle the new attacks. Current intrusion detection systems (IDSs) suffer to attain both the high detection rate and low false alarm rate. To address this issue, in this paper, we propose an IDS using different machine learning (ML) and deep learning (DL) models. This paper presents a comparative analysis of different ML models and DL models on Coburg intrusion detection datasets (CIDDSs). First, we compare different ML- and DL-based models on the CIDDS dataset. Second, we propose an ensemble model that combines the best ML and DL models to achieve high-performance metrics. Finally, we benchmarked our best models with the CIC-IDS2017 dataset and compared them with state-of-the-art models. While the popular IDS datasets like KDD99 and NSL-KDD fail to represent the recent attacks and suffer from network biases, CIDDS, used in this research, encompasses labeled flow-based data in a simulated office environment with both updated attacks and normal usage. Furthermore, both accuracy and interpretability must be considered while implementing AI models. Both ML and DL models achieved an accuracy of 99% on the CIDDS dataset with a high detection rate, low false alarm rate, and relatively low training costs. Feature importance was also studied using the Classification and regression tree (CART) model. Our models performed well in 10-fold cross-validation and independent testing. CART and convolutional neural network (CNN) with embedding achieved slightly better performance on the CIC-IDS2017 dataset compared to previous models. Together, these results suggest that both ML and DL methods are robust and complementary techniques as an effective network intrusion detection system

    Deepnglypred: A deep neural network-based approach for human n-linked glycosylation site prediction

    No full text
    Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as comple-mentary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] se-quon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 60%, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community

    RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest

    No full text
    Protein phosphorylation is one of the most widespread regulatory mechanisms in eukaryotes. Over the past decade, phosphorylation site prediction has emerged as an important problem in the field of bioinformatics. Here, we report a new method, termed Random Forest-based Phosphosite predictor 2.0 (RF-Phos 2.0), to predict phosphorylation sites given only the primary amino acid sequence of a protein as input. RF-Phos 2.0, which uses random forest with sequence and structural features, is able to identify putative sites of phosphorylation across many protein families. In side-by-side comparisons based on 10-fold cross validation and an independent dataset, RF-Phos 2.0 compares favorably to other popular mammalian phosphosite prediction methods, such as PhosphoSVM, GPS2.1, and Musite
    corecore