50 research outputs found

    A Study on Identifying Mutual Fund as an asset class for Alternative Investment with special reference to Mutual Fund amongst Generation Z

    Get PDF
    The word Savings and Investments are interchangeable in nature which plays an utmost importance in every person's life. Savings on one hand is to put money safely in a bank account while investing on other hand is to create a gradual increase in the wealth. There are various types of investment avenues available in India. People across various generations depending upon their objectives invest their money into various avenues available. Generation Z who are from mid 1990 to 2010 are the targeted population undertaken in this study. The study is an attempt to understand the awareness and the perception level of Generation Z population towards mutual funds as an investment objective. The sample chosen were from Mumbai city using simple random as the sampling technique. The three major variables studied were risk, returns and liquidity with respect to awareness and perception. The data was analyzed using regression and ANOVA technique. The study showed the investment pattern dependency was more on liquidity

    Diaqua­bis(norfloxacinato)manganese(II) 2,2′-bipyridine solvate tetra­hydrate

    Get PDF
    In the crystal structure of the title compound {systematic name: diaqua­bis[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato]manganese(II) 2,2′-bipyridine solvate tetra­hydrate}, [Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O, the pyridone O atom and one carboxyl­ate O atom of the two norfloxacin ligands are bound to the MnII ion, which is located on an inversion centre, and occupy equatorial positions, while two aqua O atoms lie in apical positions, resulting in a distorted octa­hedral geometry. The crystal packing is stabilized by N—H⋯O and O—H⋯O hydrogen-bonding interactions

    Bis(2-amino-3H-benzothia­zolium) bis­(7-oxabicyclo­[2.2.1]heptane-2,3-di­carbox­yl­ato)manganate(II) hexa­hydrate

    Get PDF
    In the crystal structure of the title salt, (C7H7N2S)2[Mn(C8H8O5)2]·6H2O, the heterocyclic N atom of the 2-amino­benzothia­zole mol­ecule is protonated. The MnII atom (site symmetry ) has a slightly distorted octa­hedral MnO6 coordination defined by the bridging O atoms of the bicyclo­heptane unit and four carboxyl­ate O atoms of two symmetry-related and fully deprotonated ligands. The crystal packing is stabilized by N—H⋯O hydrogen bonds between the cations and anions and by O—H⋯O hydrogen bonds including the crystal water mol­ecules

    Expression, Purification and Characterization of Soluble Red Rooster Laforin as a Fusion Protein in Escherichia Coli

    Get PDF
    BACKGROUND: The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. RESULTS: In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. CONCLUSIONS: Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease

    Diaqua­bis(ciprofloxacinato)manganese(II) 2,2′-bipyridine solvate tetrahydrate

    Get PDF
    In the crystal structure of the title compound {systematic name: diaquabis­[1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato]manganese(II) 2,2′-bi­pyridine solvate tetrahydrate}, [Mn(C17H17FN3O3)2(H2O)2]·C10H8N2·4H2O, the pyridone O and one carboxyl­ate O atom of the two ciprofloxacin ligands are bound to the MnII ion and occupy the equatorial positions, while the two aqua O atoms lie in the apical positions resulting in a distorted octa­hedral geometry. The crystal packing is stabilized by N–H⋯O and O–H⋯O hydrogen bonding interactions

    HUWE1 is a Molecular Link Controlling RAF-1 Activity Supported by the Shoc2 Scaffold

    Get PDF
    Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, RAF-1. Depletion of HUWE1 abolishes RAF-1 ubiquitination, with corresponding changes in ERK1/2 pathway activity occurring. Our results indicate that the HUWE1-mediated ubiquitination of Shoc2 is the switch that regulates the transition from an active to an inactive state of the RAF-1 kinase. Taken together, our results demonstrate that HUWE1 is a novel player involved in regulating ERK1/2 signal transmission through the Shoc2 scaffold complex

    Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Get PDF
    Recent evidence suggests silicon dioxide micro- and nanoparticles induce cytotoxic effects on lung cells. Thus, there is an increasing concern regarding their potential health hazard. Nevertheless, the putative toxicity of nanoparticles in mammalian cells has not yet been systematically investigated. We previously noted that several metallic oxide nanoparticles exert differential cytotoxic effects on human neural and nonneural cells. Therefore, we hypothesized that silicon dioxide nanoparticles induce cytotoxicity in U87 cells by lowering their survival by decreasing cell survival signaling and disturbing mitochondrial function. To investigate this hypothesis, we determined the activities of the key mitochondrial enzymes, citrate synthase and malate dehydrogenase, in astrocytoma U87 cells treated with silicon dioxide nanoparticles. In addition, we studied the expression of the mitochondrial DNA-encoded proteins, cytochrome C oxidase II and nicotinamide adenine dinucleotide (NADPH) dehydrogenase subunit 6, and cell signaling pathway protein extracellular signal-regulated kinase (ERK) and phosphorylated ERK in treated U87 cells. The activated form of ERK controls cell growth, differentiation, and proliferation. In parallel, we determined survival of U87 cells after treating them with various concentrations of silicon dioxide nanoparticles. Our results indicated that treatment with silicon dioxide nanoparticles induced decreases in U87 cell survival in a dose-related manner. The activities of citrate synthase and malate dehydrogenase in treated U87 cells were increased, possibly due to an energetic compensation in surviving cells. However, the expression of mitochondrial DNA-encoded cytochrome C oxidase subunit II and NADH dehydrogenase subunit 6 and the cell signaling protein ERK and phosphorylated ERK were altered in the treated U87 cells, suggesting that silicon dioxide nanoparticles induced disruption of mitochondrial DNA-encoded protein expression, leading to decreased mitochondrial energy production and decreased cell survival/proliferation signaling. Thus, our results strongly suggest that the cytotoxicity of silicon dioxide nanoparticles in human neural cells implicates altered mitochondrial function and cell survival/proliferation signaling

    Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Get PDF
    The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plastics, cosmetics, and paints) has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO) nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO) nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles

    Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

    Get PDF
    Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease

    Laforin, a Dual Specificity Phosphatase Involved in Lafora Disease, Is Present Mainly as Monomeric Form with Full Phosphatase Activity

    Get PDF
    Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity
    corecore