1,244 research outputs found

    The Role of Solar Wind Hydrogen in Space Weathering: Insights from Laboratory-Irradiated Northwest Africa 12008

    Get PDF
    Micrometeoroid impacts, solar wind plasma interactions, and regolith gardening drive the complicated and nuanced mechanism of space weathering (or optical maturation); a process by which a materials optical properties are changed as a result of chemical and physical alterations at the surface of grains on airless bodies. Reddened slopes, attenuated absorption bands, and an overall reduction in albedo in the visible and near-IR wavelength ranges are primarily the result of native iron nanoparticle (npFe0) production within glassy rims that form from sputtering and vaporization. The sizes and abundance of these particles provide information about the relative surface exposure age of a particular grain. In addition, many studies have indicated that composition greatly affects the rate at which optical maturation occurs. Despite our understanding of how npFe0 affects optical signatures, the relative roles of micrometeoroid bombardment and solar wind interactions remains undetermined. To simulate the early effects of weathering by the solar wind and to determine thresholds for optical change with respect to a given mineral phase, we irradiated a fine-grained lunar basalt with 1 keV H+ to a fluence of 6.4 x 1016 H+ per sq.cm. Surface alterations within four phases have been evaluated using transmission electron microscopy (TEM). We found that for a given fluence of H+, the extent of damage acquired by each grain was dependent on its composition. No npFe(0) was produced in any of the phases evaluated in this study. These results are consistent with many previous studies conducted using ions of similar energy, but they also provide valuable information about the onset of space weathering and the role of the solar wind during the early stages of optical maturation

    Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    Get PDF
    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an olivine grain. The deposit has 3 microstructurally distinct sub-layers composed of silicate glass with varying modal fractions and size distributions of npFe( sup 0) spherules, along with nanocrystalline silicate material. A relatively thin (50-300 nm) topmost surface layer has a high-concentration of npFe0 spherules 5-20 nm in size. Element mapping shows the layer to be enriched in Fe by a factor of 2.5 relative to the olivine substrate, with Mg and Si depleted by 20% and 10% respectively. This is compositionally complementary to the underlying, middle layer of the deposit that is depleted in Fe, enriched in Mg and has a much lower npFe0 concentration. A third layer of nanocrystalline olivine occurs at the substrate interface. Discussion: The FE-STEM results suggest the topmost layer is a vapor deposit, underlain by a thicker microstructurally complex melt-generated layer. The compositional relations suggest the melt layer was partially vaporized, preferentially losing more volatile elements (e.g., Fe). The vaporized material re-condensed to form the thin, npFe(sup 0)-rich surface deposit during or immediately after the scan cycle. Nanocrystalline olivine that grew within the melt layer as it formed and cooled is similar in volume and microstructure to what we have observed in the impact melt lining of a micrometeorite impact crater in olivine. This suggest the time-temperature relations attained in the laser sample may not be too different from a micrometeorite impact. Our TEM observations, however, do not show evidence for the same level of mechanical dam-age (e.g., fracturing) seen around the natural micrometeorite crater

    Advanced Radiation Panel design for applications in National Security and Food Safety

    Full text link
    We describe a new concept for a basic radiation detection panel based on conventional scintillator technology and commercially available solid-state photo-detectors. The panels are simple in construction, robust, very efficient and cost-effective and are easily scalable in size, from tens of cm2^2 to tens of m2^2. We describe two possible applications: flagging radioactive food coontamination and detection of illicit radio nucleides, such as those potentially used in a terrorist attack with a dirty bomb.Comment: 10 pages, 11 figure

    Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Get PDF
    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes

    Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    Get PDF
    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We also obtained O Ka spectra from phyllosilicates in both regions of the sample. The O Ka spectra show a pre-edge feature at approximately 530.5 electronvolts that is related to O 2p states hybridized with Fe 3d states. The intensity ratio of the O Ka pre-edge peak relative to the main part of the O Ka edge (that results from transitions of O 1s to 2p states) is lower in the irradiated layer compared to the pristine material and may reflect the loss of O (as OH) as was observed by IR spectroscopy. Conclusions: In addition to amorphization and OH loss, EELS spectra of He(+) irradiated matrix phyllosilicates in Murchison show that some of the Fe(3+) is reduced to Fe(2+). Spectral deconvolution is underway to extract quantitative ratios from the EELS spectra

    Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    Get PDF
    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered
    • …
    corecore