64 research outputs found

    A generalized reusable guidance algorithm for optimal aerobraking

    Get PDF
    A practical real-time guidance algorithm was developed for guiding aerobraking vehicles in such a way that the maximum heating rate, the maximum structural loads, and the post-aeropass delta-V requirements (for post-aeropass orbit insertion) are all minimized. The algorithm is general and reusable in the sense that a minimum of assumptions are made, thus minimizing the number of gains and mission-dependent parameters that must be laboriously determined prior to a particular mission. A particularly interesting feature is that inplane guidance performance is tuned by simply adjusting one mission-dependent parameter, the bank margin; similarly, the out-of-plane guidance performance is turned by simply adjusting a plane controller time constant. Other objectives in the algorithm development are simplicity, efficiency, and ease of use. The algorithm is developed for, but not necessarily restricted to, a single pass mission and a trimmed vehicle with a bank angle modulation as the method of trajectory control. Guidance performance is demonstrated via results obtained using this algorithm integrated into an aerobraking test-bed program. Comparisons are made with numerical results from a version of the aerobraking guidance algorithm that was to be flown onboard NASA's aeroassist flight experiment (AFE) vehicle. Promising results are obtained with a minimum of development effort

    The Effects of Issue-free Cues

    Get PDF
    I propose an addition to the existing literature: issue-free cues. I hypothesized that candidates are able to brand themselves with issue-free cues (things like flags, poses, family, etc.) and that these cues can cause voters to attribute positions to the candidate that do not necessarily line up with the candidate\u27s actual postions, or these cues could activate particular beliefs held by voters, rendering those beliefs more infuential in their decision-making than they otherwise would be. Or, finally, they could use symbolic imagery to produce an emotional reaction that motivates voters to make their vote choice in a less logical manner. I tested the effects of visual stimuli on candidate selection, finding that candidates can, with even a small, subtle cue such as the background of a picture, determine which issues drive the decision-making of the very voters who are supposed to be holding them accountable

    Rapid Trajectory Optimization for the ARES I Launch Vehicle

    Get PDF
    A simplified ascent trajectory optimization procedure has been developed with application to NASA's proposed Ares I launch vehicle. In the interest of minimizing bending loads and ensuring safe separation of the first-stage solid rocket motor, the vehicle is con- strained to follow a gravity-turn trajectory. This reduces the design space to just two free parameters, the pitch rate after a short vertical rise phase to clear the launch pad, and initial launch azimuth. The pitch rate primarily controls the in-plane parameters (altitude, speed, flight path angle) of the trajectory whereas the launch azimuth primarily controls the out-of-plane portion (velocity heading.) Thus, the optimization can be mechanized as two one-dimensional searches that converge quickly and reliably. The method is compared with POST-optimized trajectories to verify its optimality

    Examination of a Practical Aerobraking Guidance Algorithm

    Get PDF
    A practical real time guidance algorithm has been developed for aerobraking vehicles that minimizes the post-aeropass Delta V requirements for orbit insertion while nearly minimizing the maximum heating rate and the maximum structural loads. The algorithm is general in the sense that a minimum of assumptions is made, thus greatly reducing the number of parameters that must be determined prior to a given mission. An interesting feature is that in-plane guidance performance is tuned by adjusting one mission-dependent parameter, the bank margin; similarly, the out-of-plane guidance performance is tuned by adjusting a plane controller time constant. Other features of the algorithm are simplicity, efficiency, and ease of use. The algorithm is designed for, but not restricted to, a trimmed vehicle with bank angle modulation as the method of trajectory control. Performance of this guidance algorithm during flight in Earth's atmosphere is examined by its use in an aerobraking testbed program. The performance inquiry extends to a wide range of entry speeds covering a number of potential mission applications. Favorable results have been obtained with a minimum of development effort, and directions for improvement of performance are indicated

    Hybrid Mission Planning with Coalition Formation

    Get PDF

    Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle

    Get PDF
    The Space Launch System (SLS) Block-1B vehicle includes a low thrust-to-weight upper stage, which presents challenges to heritage ascent guidance algorithms. A trade study was conducted to evaluate two alternative guidance algorithms: 1) Powered Explicit Guidance (PEG), based on a modified implementation of PEG used on the Block-1 vehicle, and 2) Optimal Guidance (OPGUID), an algorithm developed for Marshall Space Flight Center (MSFC) and used on Constellation and other Guidance, Navigation, and Controls (GN&C) projects. The design criteria, approach, and results of the trade study are given, as well as other impacts and considerations for Block-1B type missions

    Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle

    Get PDF
    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. Since EM-1 has an exo-atmospheric flight profile similar to the Space Shuttle, Block-1 guidance utilizes the shuttle-heritage Powered Explicit Guidance (PEG) algorithm. The Block-1 implementation of PEG has been thoroughly tested, and is robust to certain failure scenarios, including loss of a single core engine

    SLS Trade Study 0058: Day of Launch (DOL) Wind Biasing

    Get PDF
    SLS heritage hardware and legacy designs have shown load exceedances at several locations during Design Analysis Cycles (DAC): MPCV Z bending moments; ICPS Electro-Mechanical Actuator (EMA) loads; Core Stage loads just downstream of Booster forward interface. SLS Buffet Loads Mitigation Task Team (BLMTT) tasked to study issue. Identified low frequency buffet load responses are a function of the vehicle's total angle of attack (AlphaTotal). SLS DOL Wind Biasing Trade team to analyze DOL wind biasing methods to limit maximum AlphaTotal in the M0.8 - 2.0 altitude region for EM-1 and EM-2 missions through investigating: Trajectory design process; Wind wavelength filtering options; Launch availability; DOL process to achieve shorter processing/uplink timeline. Trade Team consisted of personnel supporting SLS, MPCV, GSDO programs
    • …
    corecore