210 research outputs found

    Spintronics and spin currents: from magnetic memories to black holes

    Get PDF
    Physikalisches Kolloquium Technische Universität Kaiserslauter

    Bulk and edge spin transport in topological magnon insulators

    Full text link
    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal|topological magnon insulator|normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk-dominated for small systems to edge-dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.Comment: 5 pages, 5 figures, 3 pages Supplemental Material with 2 additional figure

    Electronic Pumping of Quasiequilibrium Bose-Einstein Condensed Magnons

    Full text link
    We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein condensed magnons in an insulator in direct contact with a conductor. While charge transfer is prohibited across the interface, spin transport arises from the exchange coupling between insulator and conductor spins. In normal insulator phase, spin transport is governed solely by the presence of thermal and spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile, gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic bias of the system, spin may flow in either direction across the interface, engendering the possibility of a dynamical phase transition of magnons. We discuss experimental feasibility of observing a BEC steady state (fomented by a spin Seebeck effect), which is contrasted to the more familiar spin-transfer induced classical instabilities.Comment: 7 pages, 4 figure

    Many-body theory of spin-current driven instabilities in magnetic insulators

    Full text link
    We consider a magnetic insulator in contact with a normal metal. We derive a self-consistent Keldysh effective action for the magnon gas that contains the effects of magnon-magnon interactions and contact with the metal to lowest order. Self-consistent expressions for the dispersion relation, temperature and chemical potential for magnons are derived. Based on this effective action, we study instabilities of the magnon gas that arise due to spin-current flowing across the interface between the normal metal and the magnetic insulator. We find that the stability phase diagram is modified by an interference between magnon-magnon interactions and interfacial magnon-electron coupling. These effects persist at low temperatures and for thin magnetic insulators.Comment: 10 pages and 5 figure

    Long-Range Phonon Spin Transport in Ferromagnet-Nonmagnetic Insulator Heterostructures

    Get PDF
    We investigate phonon spin transport in an insulating ferromagnet-nonmagnet-ferromagnet heterostructure. We show that the magnetoelastic interaction between the spins and the phonons leads to nonlocal spin transfer between the magnets. This transfer is mediated by a local phonon spin current and accompanied by a phonon spin accumulation. The spin conductance depends nontrivially on the system size, and decays over millimeter length scales for realistic material parameters, far exceeding the decay lengths of magnonic spin currents.Comment: 6 pages, 4 figure

    Breaking of Coulomb blockade by macrospin-assisted tunneling

    Full text link
    A magnet with precessing magnetization pumps a spin current into adjacent leads. As a special case of this spin pumping, a precessing macrospin (magnetization) can assist electrons in tunneling. In small systems, however, the Coulomb blockade effect can block the transport of electrons. Here, we investigate the competition between macrospin-assisted tunneling and Coulomb blockade for the simplest system where both effects meet; namely, for a single tunnel junction between a normal metal and a metallic ferromagnet with precessing magnetization. By combining Fermi's golden rule with magnetization dynamics and charging effects, we show that the macrospin-assisted tunneling can soften or even break the Coulomb blockade. The details of these effects -- softening and breaking of Coulomb blockade -- depend on the macrospin dynamics. This allows, for example, to measure the macrospin dynamics via a system's current-voltage characteristics. It also allows to control a spin current electrically. From a general perspective, our results provide a platform for the interplay between spintronics and electronics on the mesoscopic scale. We expect our work to provide a basis for the study of Coulomb blockade in more complicated spintronic systems.Comment: 7 pages, 3 figure

    Spin current cross-correlations as a probe of magnon coherence

    Get PDF
    Motivated by the important role of the normalized second order coherence function, often called g(2)g^{(2)}, in the field of quantum optics, we propose a method to determine magnon coherence in solid-state devices. Namely, we show that the cross-correlations of pure spin-currents injected by a ferromagnet into two metal leads, normalized by their dc value, replicate the behavior of g(2)g^{(2)} when magnons are driven far from equilibrium. We consider two scenarios: driving by ferromagnetic resonance, which leads to the coherent occupation of a single mode, and driving by heating of the magnons, which leads to an excess of incoherent magnons. We find an enhanced normalized cross-correlation in the latter case, thereby demonstrating bunching of nonequilibrium thermal magnons due to their bosonic statistics. Our results contribute to the burgeoning field of quantum magnonics, which seeks to explore and exploit the quantum nature of magnons

    Dynamic phase diagram of dc-pumped magnon condensates

    Full text link
    We study the effects of nonlinear dynamics and damping by phonons on a system of interacting electronically pumped magnons in a ferromagnet. The nonlinear effects are crucial for constructing the dynamic phase diagram, which describes how "swasing" and Bose-Einstein condensation emerge out of the quasiequilibrated thermal cloud of magnons. We analyze the system in the presence of magnon damping and interactions, demonstrating the continuous onset of stable condensates as well as hysteretic transitions.Comment: 9 pages, 6 figure

    Magnon-Mediated Indirect Exciton Condensation through Antiferromagnetic Insulators

    Get PDF
    Electrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally interact via interfacial coupling to the antiferromagnetic magnons. We show that by employing magnetically uncompensated interfaces, we can design the magnon-mediated interaction to be attractive or repulsive by varying the thickness of the antiferromagnetic insulator by a single atomic layer. We derive an analytical expression for the critical temperature TcT_c of the indirect exciton condensation. Within our model, anisotropy is found to be crucial for achieving a finite TcT_c, which increases with the strength of the exchange interaction in the antiferromagnetic bulk. For realistic material parameters, we estimate TcT_c to be around 7 K, the same order of magnitude as the current experimentally achievable exciton condensation where the attraction is solely due to the Coulomb interaction. The magnon-mediated interaction is expected to cooperate with the Coulomb interaction for condensation of indirect excitons, thereby providing a means to significantly increase the exciton condensation temperature range.Comment: 7+13 Pages, 2+1 figures. Added discussion of retardation effects. Accepted for publication in Phys. Rev. Let

    Magnon antibunching in a nanomagnet

    Full text link
    We investigate the correlations of magnons inside a nanomagnet and identify a regime of parameters where the magnons become antibunched, i.e., where there is a large probability for occupation of the single-magnon state. This antibunched state is very different from magnons at thermal equilibrium and microwave-driven coherent magnons. We further obtain the steady state analytically and describe the magnon dynamics numerically, and ascertain the stability of such antibunched magnons over a large window of magnetic anisotropy, damping and temperature. This means that the antibunched magnon state is feasible in a wide class of low-damping magnetic nanoparticles. To detect this quantum effect, we propose to transfer the quantum information of magnons to photons by magnon-photon coupling and then measure the correlations of photons to retrieve the magnon correlations. Our findings may provide a promising platform to study quantum-classical transitions and for designing a single magnon source.Comment: 6 pages, 3 figure
    corecore