1,858 research outputs found

    Politically correct norms encourage creativity among mixed-sex work groups

    Get PDF
    They reduce uncertainty, write Jack A. Goncalo, Jennifer Chatman, Michelle M. Duguid and Jessica A. Kenned

    Creativity from Constraint? How Political Correctness Influences Creativity in Mixed-Sex Work Groups

    Get PDF
    Most group creativity research is premised on the assumption that creativity is unleashed by removing normative constraints. As work organizations become increasingly diverse in terms of gender, however, this assumption needs to be reconsidered since mixed-sex interactions carry a high risk of offense. Departing from the assumption that normative constraints necessarily stifle creativity, we develop a theoretical perspective in which creativity in mixed-sex groups is enhanced by imposing a norm to be politically correct (PC)—a norm that sets clear expectations for how men and women should interact with one another. We present evidence from two group experiments showing that the PC norm promotes rather than suppresses members’ free expression of ideas by reducing the uncertainty they experience in mixed-sex work groups. These results highlight a paradoxical consequence of the PC norm: A term that has been used to undermine expectations to censor offensive language as a threat to free speech actually provides a normative foundation upon which demographically heterogeneous work groups can freely exchange creative ideas. We discuss the implications of our findings for managing creativity in diverse groups and under conditions of uncertainty, and the counterintuitive role that normative constraints play in that process

    Wellbore Permeability Estimates from Vertical Interference Testing of Existing Wells

    Get PDF
    AbstractWellbore integrity is considered an important risk factor for leakage of CO2 and formation fluids out of geological CO2 storage sites. Quantifying the effective hydraulic parameters that control vertical migration of fluids along the wellbore involves data collection through numerous field and laboratory experiments. The vertical interference test (VIT) is a downhole test designed to measure hydraulic communication of the outside-of-casing wellbore barrier system over a selected well section. Results from these tests can be analyzed numerically to determine the average permeability of the section. Several field surveys of existing wells have resulted in 9 VIT datasets, of which three are presented here. The effective permeability estimates for the three tests span two orders of magnitude, from approximately 1 mD to more than 100 mD. When compared with companion sidewall core analyses of the cement matrix that have permeabilities in the microD range, the VIT data suggest that interfaces or defects in the cement sheath are responsible for flow. Initial analysis of the remaining 6 datasets suggests an even larger range in effective permeability values, as low as microD to more than 1 D, indicating that well permeability can be highly variable from well to well and that high values of permeability are possible. These data provide important insights into realistic wellbore integrity of typical wells in N. America, and help us constrain models for understanding and mitigating risk of leakage during CO2 storage operations

    Complementary approaches to understanding the plant circadian clock

    Get PDF
    Circadian clocks are oscillatory genetic networks that help organisms adapt to the 24-hour day/night cycle. The clock of the green alga Ostreococcus tauri is the simplest plant clock discovered so far. Its many advantages as an experimental system facilitate the testing of computational predictions. We present a model of the Ostreococcus clock in the stochastic process algebra Bio-PEPA and exploit its mapping to different analysis techniques, such as ordinary differential equations, stochastic simulation algorithms and model-checking. The small number of molecules reported for this system tests the limits of the continuous approximation underlying differential equations. We investigate the difference between continuous-deterministic and discrete-stochastic approaches. Stochastic simulation and model-checking allow us to formulate new hypotheses on the system behaviour, such as the presence of self-sustained oscillations in single cells under constant light conditions. We investigate how to model the timing of dawn and dusk in the context of model-checking, which we use to compute how the probability distributions of key biochemical species change over time. These show that the relative variation in expression level is smallest at the time of peak expression, making peak time an optimal experimental phase marker. Building on these analyses, we use approaches from evolutionary systems biology to investigate how changes in the rate of mRNA degradation impacts the phase of a key protein likely to affect fitness. We explore how robust this circadian clock is towards such potential mutational changes in its underlying biochemistry. Our work shows that multiple approaches lead to a more complete understanding of the clock

    A sense of embodiment is reflected in people's signature size

    Get PDF
    BACKGROUND: The size of a person's signature may reveal implicit information about how the self is perceived although this has not been closely examined. METHODS/RESULTS: We conducted three experiments to test whether increases in signature size can be induced. Specifically, the aim of these experiments was to test whether changes in signature size reflect a person's current implicit sense of embodiment. Experiment 1 showed that an implicit affect task (positive subliminal evaluative conditioning) led to increases in signature size relative to an affectively neutral task, showing that implicit affective cues alter signature size. Experiments 2 and 3 demonstrated increases in signature size following experiential self-focus on sensory and affective stimuli relative to both conceptual self-focus and external (non-self-focus) in both healthy participants and patients with anorexia nervosa, a disorder associated with self-evaluation and a sense of disembodiment. In all three experiments, increases in signature size were unrelated to changes in self-reported mood and larger than manipulation unrelated variations. CONCLUSIONS: Together, these findings suggest that a person's sense of embodiment is reflected in their signature size

    Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures

    Get PDF
    Funding This research was funded by Mars Petcare UK and the Scottish Funding Council Research Excellence Grant (REG). Authors WR and MN receive salary support from the Rural and Environmental Sciences and Analytical Services Division (RESAS).Peer reviewedPublisher PD

    Responses to environmental enrichment differ with sex and genotype in a transgenic mouse model of Huntington's disease.

    Get PDF
    BACKGROUND: Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington's disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an "enriched" environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The "home cage" and "playground" groups were subdivided into "handling" (stimulated throughout the experimental period) and "no-handling" groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice. CONCLUSIONS/SIGNIFICANCE: We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals
    corecore