69 research outputs found

    A model for the collapse of the edge when two transitions routes compete

    Full text link
    The transition to turbulence in many shear flows proceeds along two competing routes, one linked with finite-amplitude disturbances and the other one originating from a linear instability, as in e.g. boundary layer flows. The dynamical systems concept of edge manifold has been suggested in the subcritical case to explain the partition of the state space of the system. This investigation is devoted to the evolution of the edge manifold when a linear stability is added in such subcritical systems, a situation poorly studied despite its prevalence in realistic fluid flows. In particular the fate of the edge state as a mediator of transition is unclear. A deterministic three-dimensional model is suggested, parametrised by the linear instability growth rate. The edge manifold evolves topologically, via a global saddle-loop bifurcation, from the separatrix between two attraction basins to the mediator between two transition routes. For larger instability rates, the stable manifold of the saddle point increases in codimension from 1 to 2 after an additional local saddle node bifurcation, causing the collapse of the edge manifold. As the growth rate is increased, three different regimes of this model are identified, each one associated with a flow case from the recent hydrodynamic literature. A simple nonautonomous generalisation of the model is also suggested in order to capture the complexity of spatially developing flows.Comment: 12 pages, 10 figures, under review in Phys. Rev.

    Recurrent bursts via linear processes in turbulent environments

    Full text link
    Large-scale instabilities occurring in the presence of small-scale turbulent fluctuations are frequently observed in geophysical or astrophysical contexts but are difficult to reproduce in the laboratory. Using extensive numerical simulations, we report here on intense recurrent bursts of turbulence in plane Poiseuille flow rotating about a spanwise axis. A simple model based on the linear instability of the mean flow can predict the structure and time scale of the nearly-periodic and self-sustained burst cycles. Rotating Poiseuille flow is suggested as a prototype for future studies of low-dimensional dynamics embedded in strongly turbulent environments

    Flow Statistics in the Transitional Regime of Plane Channel Flow

    Full text link
    The transitional regime of plane channel flow is investigated {above} the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness. Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime

    Splitting of a turbulent puff in pipe flow

    No full text
    International audienceThe transition to turbulence of the flow in a pipe of constant radius is numerically studied over a range of Reynolds numbers where turbulence begins to expand by puff splitting. We first focus on the case Re = 2300 where splitting occurs as discrete events. Around this value only long-lived pseudo-equilibrium puffs can be observed in practice, as typical splitting times become very long. When Re is further increased, the flow enters a more continuous puff splitting regime where turbulence spreads faster. Puff splitting presents itself as a two-step stochastic process. A splitting puff first emits a chaotic pseudopod made of azimuthally localized streaky structures at the downstream (leading) laminar-turbulent interface. This structure can later expand azimuthally as it detaches from the parent puff. Detachment results from a collapse of turbulence over the whole cross-section of the pipe. Once the process is achieved a new puff is born ahead. Large-deviation consequences of elementary stochastic processes at the scale of the streak are invoked to explain the statistical nature of splitting and the Poisson-like distributions of splitting times reported by Avila, Moxey, de Lozar, Avila, Barkley and Hof (2011 Science 333 192–196)

    Bypass transition and spot nucleation in boundary layers

    Full text link
    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows

    Surfing the edge: Finding nonlinear solutions using feedback control

    Get PDF
    Many transitional wall-bounded shear flows are characterised by the coexistence in state-space of laminar and turbulent regimes. Probing the edge boundarz between the two attractors has led in the last decade to the numerical discovery of new (unstable) solutions to the incompressible Navier--Stokes equations. However, the iterative bisection method used to achieve this can become prohibitively costly for large systems. Here we suggest a simple feedback control strategy to stabilise edge states, hence accelerating their numerical identification by several orders of magnitude. The method is illustrated for several configurations of cylindrical pipe flow. Traveling waves solutions are identified as edge states, and can be isolated rapidly in only one short numerical run. A new branch of solutions is also identified. When the edge state is a periodic orbit or chaotic state, the feedback control does not converge precisely to solutions of the uncontrolled system, but nevertheless brings the dynamics very close to the original edge manifold in a single run. We discuss the opportunities offered by the speed and simplicity of this new method to probe the structure of both state space and parameter space
    corecore