5 research outputs found

    Chromosome sizes and phylogenetic relationships between serotypes of Actinobacillus pleuropneumoniae

    Get PDF
    The genome size of Actinobacillus pleuropneumoniae was determined by pulsed field gel electrophoresis of AscI and ApaI digested chromosomal DNA. The genome size of the type strain 4074T (serotype 1) was determined to be 2404±40 kb. The chromosome sizes for the reference strains of the other serotypes range between 2.3 and 2.4 Mb. The restriction pattern profiles of AscI, ApaI and NheI digested chromosomes showed a high degree of polymorphism among the different serotype reference strains and allowed their discrimination. The analysis of the macrorestriction pattern polymorphism revealed phylogenetic relationships between the different serotype reference strains which reflect to some extent groups of serotypes known to cross-react serologically. In addition, different pulsed fields gel electrophoresis patterns also revealed heterogeneity in the chromosomal structure among different field strains of serotypes 1, 5a, and 5b, while strains of serotype 9 originating from most distant geographical places showed homogeneous ApaI patterns in pulsed field gel electrophoresi

    Chromosome sizes and phylogenetic relationships between serotypes of Actinobacillus pleuropneumoniae

    Get PDF
    The genome size of Actinobacillus pleuropneumoniae was determined by pulsed field gel electrophoresis of AscI and ApaI digested chromosomal DNA. The genome size of the type strain 4074T (serotype 1) was determined to be 2404±40 kb. The chromosome sizes for the reference strains of the other serotypes range between 2.3 and 2.4 Mb. The restriction pattern profiles of AscI, ApaI and NheI digested chromosomes showed a high degree of polymorphism among the different serotype reference strains and allowed their discrimination. The analysis of the macrorestriction pattern polymorphism revealed phylogenetic relationships between the different serotype reference strains which reflect to some extent groups of serotypes known to cross-react serologically. In addition, different pulsed fields gel electrophoresis patterns also revealed heterogeneity in the chromosomal structure among different field strains of serotypes 1, 5a, and 5b, while strains of serotype 9 originating from most distant geographical places showed homogeneous ApaI patterns in pulsed field gel electrophoresis

    Characterization of a Periplasmic ATP-Binding Cassette Iron Import System of Brachyspira (Serpulina) hyodysenteriae

    No full text
    The nucleotide sequence of the pathogenic spirochete Brachyspira hyodysenteriae bit (for “Brachyspira iron transport”) genomic region has been determined. The bit region is likely to encode an iron ATP-binding cassette transport system with some homology to those encountered in gram-negative bacteria. Six open reading frames oriented in the same direction and physically linked have been identified. This system possesses a protein containing ATP-binding motifs (BitD), two hydrophobic cytoplasmic membrane permeases (BitE and BitF), and at least three lipoproteins (BitA, BitB, and BitC) with homology to iron periplasmic binding proteins. These periplasmic binding proteins exhibit lipoprotein features. They are labeled by [(3)H]palmitate when tested in recombinant Escherichia coli, and their signal peptides are typical for substrates of the type II secretory peptidase. The FURTA system and Congo red assay indicate that BitB and BitC are involved in iron binding. The Bit system is detected only in B. hyodysenteriae and is absent from B. innocens and B. pilosicoli

    Antimicrobial Properties of MX-2401, an Expanded-Spectrum Lipopeptide Active in the Presence of Lung Surfactantâ–ż

    No full text
    MX-2401 is an expanded-spectrum lipopeptide antibiotic selective for Gram-positive bacteria that is a semisynthetic analog of the naturally occurring lipopeptide amphomycin. It was active against Enterococcus spp., including vancomycin-sensitive Enterococcus (VSE), vanA-, vanB-, and vanC-positive vancomycin-resistant Enterococcus (VRE), linezolid- and quinupristin-dalfopristin-resistant isolates (MIC90 of 4 ÎĽg/ml), methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) (MIC90 of 2 ÎĽg/ml), coagulase-negative staphylococci, including methicillin-sensitive Staphylococcus epidermidis (MSSE) and methicillin-resistant S. epidermidis (MRSE) (MIC90 of 2 ÎĽg/ml), and Streptococcus spp. including viridans group streptococci, and penicillin-resistant, penicillin-sensitive, penicillin-intermediate and macrolide-resistant isolates of Streptococcus pneumoniae (MIC90 of 2 ÎĽg/ml). MX-2401 demonstrated a dose-dependent postantibiotic effect varying from 1.5 to 2.4 h. Furthermore, MX-2401 was rapidly bactericidal at 4 times the MIC against S. aureus and Enterococcus faecalis, with more than 99.9% reduction in viable bacterial attained at 4 and 24 h, respectively. The MICs of MX-2401 against MRSA, MSSA, VSE, and VRE strains serially exposed for 15 passages to sub- to supra-MICs of MX-2401 remained within three dilutions of the original MIC. In contrast to that of the lipopeptide daptomycin, the antibacterial activity of MX-2401 was not affected in vitro by the presence of lung surfactant, and MX-2401 was active in vivo in the bronchial-alveolar pneumonia mouse model, in which daptomycin failed to show any activity. Moreover, the activity of MX-2401 was not as strongly dependent on the Ca2+ concentration as is the activity of daptomycin. In conclusion, MX-2401 is a promising new-generation lipopeptide for the treatment of serious infections with Gram-positive bacteria, including hospital-acquired pneumonia
    corecore