2 research outputs found

    Defibrillated celluloses via dual twin-screw extrusion and microwave hydrothermal treatment (MHT) of spent pea biomass

    Get PDF
    The defibrillation of lignocellulosic matter from pea waste using a dual approach of twin-screw extrusion and microwave hydrothermal treatment (MHT) in the presence of water alone from 120 to 200 °C is reported. Gradual "scissoring" of biomass macrofibers to microfibrils was observed alluding to the hydrothermal microwave-assisted selective scissoring (Hy-MASS) concept. The morphology and properties of two types of MFC: PEA (nonextruded) and EPEA (extruded) were compared. The EPEA samples gave a higher crystallinity index and thermal stability, reduced lignin and hemicellulose content, narrower fibril width, better water holding capacity slightly, and higher surface area compared with their nonextruded counterparts (PEA). Twin screw extrusion as a pretreatment method followed by MHT represents a potential way to produce microfibrillated cellulose with improved physical performance from complex biomass sources

    Perspectives on "game changer" global challenges for sustainable 21st century : Plant-based diet, unavoidable food waste biorefining, and circular economy

    Get PDF
    Planet Earth is under severe stress from several inter-linked factors mainly associated with rising global population, linear resource consumption, security of resources, unsurmountable waste generation, and social inequality, which unabated will lead to an unsustainable 21st Century. The traditional way products are designed promotes a linear economy that discards recoverable resources and creates negative environmental and social impacts. Here, we suggest multi-disciplinary approaches encompassing chemistry, process engineering and sustainability science, and sustainable solutions in "game changer" challenges in three intersecting arenas of food: Sustainable diet, valorisation of unavoidable food supply chain wastes, and circularity of food value chain systems aligning with the United Nations' seventeen Sustainable Development Goals. In the arena of sustainable diet, comprehensive life cycle assessment using the global life cycle inventory datasets and recommended daily servings is conducted to rank food choices, covering all food groups from fresh fruits/vegetables, lentils/pulses and grains to livestock, with regard to health and the environment, to emphasise the essence of plant-based diet, especially plant-based sources of protein, for holistic systemic sustainability and stability of the earth system. In the arena of unavoidable food supply chain wastes, economically feasible and synergistically (energy and material) integrated innovative biorefinery systems are suggested to transform unavoidable food waste into functional and platform chemical productions alongside energy vectors: Fuel or combined heat and power generation. In the arena of circularity of food value chain systems, novel materials and methods for plant-based protein functionalisation for food/nutraceutical applications are investigated using regenerative bio-surfactants from unavoidable food waste. This circular economy or industrial symbiosis example thus combines the other two arenas, i.e., plant-based protein sourcing and unavoidable food waste valorisation. The multi-disciplinary analysis here will eventually impact on policies for dietary change, but also contribute knowledge needed by industry and policy makers and raise awareness amongst the population at large for making a better approach to the circular economy of food
    corecore