51 research outputs found
Towards a new protocol for field measurements of greenhouse gases from wastewater treatment plant
Emissions into the atmosphere of greenhouse gases (GHGs), i.e., carbon dioxide, methane and nitrous oxide from wastewater treatment plants are of increasing concern in the water industry. In order to produce useful and comparable information for monitoring, assessing and reporting GHG emissions from wastewater treatment plants, there is a crescent need for a general accepted methodology. This paper aims at proposing the first protocol for monitoring and accounting GHG emissions from wastewater treatment plants taking into account both direct and internal indirect emissions focusing on sections known to be major responsible of GHG emissions i.e. oxidation tanks and sludge digestion. The main novelties of the proposed protocol are: (i) direct and indirect internal emissions ascribed to aeration devices which are related each other, (ii) the monitoring of biogas composition in case of anaerobic digestion which affects GHG emissions offset due to biogas valorization systems and (iii) monitoring of non-aerated tanks
Occupational exposure to antineoplastic drugs in hospital environments: Potential risk associated with contact with cyclophosphamide-and ifosfamide-contaminated surfaces
Background: Cyclophosphamide (CP) and ifosfamide (IP) contaminations have been detected in hospital environments. This study was conducted to determine if there was any contamination in the spaces (floors and door handles) between the hospital exit and the antineoplastic drugs (ADs) preparation and administration units. At the same time, the authors proposed a new automation of the analytical procedure to considerably decrease the time needed for sample preparation and analysis. Material and Methods: To evaluate the ADs contamination of surfaces, 829 wipe tests were performed in a campaign involving 3 hospitals located in Italy. Sampling was performed using an innovative kit. The levels of ADs were measured in each wipe sample using liquid chromatography/ triple quadrupole. Results: On-line solid-phase extraction guarantees the construction of a robust and reproducible analytical me-thod. The CP and IP recoveries from stainless steel, polycarbonate and polyvinyl chloride ranged >80%, and the wipe holders and the automation tested ensured desorption efficiencies close to 100% for both the ADs. Of the 552 wipes taken on the spaces between the hospital exit and the preparation, administration and pharmacy warehouse units, 22 were greater than or equal to the limit of qu-antification, all adjacent to the administration units. Conclusions: This study provides an insight into the exposure situation against ADs residues. In order to improve environmental monitoring programs, the authors propose to evaluate the ADs contamination also outside the preparation, administration and pharmacy warehouse units
Occupational exposure to antineoplastic drugs in hospital environments: Potential risk associated with contact with cyclophosphamide-and ifosfamide-contaminated surfaces
BackgroundCyclophosphamide (CP) and ifosfamide (IP) contaminations have been detected in hospital environments. This study was conducted to determine if there was any contamination in the spaces (floors and door handles) between the hospital exit and the antineoplastic drugs (ADs) preparation and administration units. At the same time, the authors proposed a new automation of the analytical procedure to considerably decrease the time needed for sample preparation and analysis.Material and MethodsTo evaluate the ADs contamination of surfaces, 829 wipe tests were performed in a campaign involving 3 hospitals located in Italy. Sampling was performed using an innovative kit. The levels of ADs were measured in each wipe sample using liquid chromatography/triple quadrupole.ResultsOn-line solid-phase extraction guarantees the construction of a robust and reproducible analytical method. The CP and IP recoveries from stainless steel, polycarbonate and polyvinyl chloride ranged >80%, and the wipe holders and the automation tested ensured desorption efficiencies close to 100% for both the ADs. Of the 552 wipes taken on the spaces between the hospital exit and the preparation, administration and pharmacy warehouse units, 22 were greater than or equal to the limit of quantification, all adjacent to the administration units.ConclusionsThis study provides an insight into the exposure situation against ADs residues. In order to improve environmental monitoring programs, the authors propose to evaluate the ADs contamination also outside the preparation, administration and pharmacy warehouse units
Health risk assessment related to hydrogen peroxide presence in the workplace atmosphere - analytical methods evaluation for an innovative monitoring protocol
ObjectivesHydrogen peroxide (HP) accounts for 15% of the total global chemical revenue. According to the National Institute of Occupational Safety and Health, the HP concentration immediately dangerous to human life or health is 75 ppm. Operators exposed to HP should pay attention when choosing the monitoring technique that should be specific and sensitive enough to discriminate the exposure levels from background concentrations. In order to assess the long- and short-term exposure to HP in disinfection processes, the authors compared 6 industrial hygiene monitoring methods to evaluate their efficiency in measuring airborne HP concentrations.Material and MethodsAirborne HP concentrations were evaluated using an on-fiber triphenylphosphine solid-phase microextraction method, and they were compared with those obtained using a 13-mm Swinnex titanium oxysulfate filter holder and 4 portable direct-reading electrochemical sensors. A survey carried out in wood pulp bleaching, food and beverage disinfection processing, and in a hospital department to reduce the risk of spreading nosocomial infections, was performed during routine operations to access the risk of HP occupational exposure.ResultsThrough the generation of HP gaseous dynamic atmospheres (0.1–85 ppm), the authors evaluated the consistency of the results obtained using the 6 methods described. The monitoring campaigns showed that the increase in HP could be relatively high (until 67 ppm) in food and beverage processing.ConclusionsIn the authors’ opinion, the current 8-h time-weighted average limits of 1 ppm for HP do not reflect the actual risk; a short-term exposure limit would, therefore, provide a much better protection
Liquid phase microextraction techniques combined with chromatography analysis: A review
Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid-liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed
Solid phase microextraction techniques used for gas chromatography: A review
In the last decade, the development and adoption of greener and sustainable microextraction techniques have been proved to be an effective alternative to classical sample preparation procedures. In this review, 10 commercially available solid-phase microextraction systems are presented, with special attention to the appraisal of their analytical, bioanalytical, and environmental engineering. This review provides an overview of the challenges and achievements in the application of fully automated miniaturized sample preparation methods in analytical laboratories. Both theoretical and practical aspects of these environment-friendly preparation approaches are discussed. The application of chemometrics in method development is also discussed. We are convinced that green analytical chemistry will be really useful in the years ahead. The application of cheap, fast, automated, clever , and environmentally safe procedures to environmental, clinical, and food analysis will improve significantly the quality of the analytical data
High-throughput analysis of selected urinary hydroxy polycyclic aromatic hydrocarbons by an innovative automated solid-phase microextraction
High-throughput screening of samples is the strategy of choice to detect occupational exposure biomarkers, yet it requires a user-friendly apparatus that gives relatively prompt results while ensuring high degrees of selectivity, precision, accuracy and automation, particularly in the preparation process. Miniaturization has attracted much attention in analytical chemistry and has driven solvent and sample savings as easier automation, the latter thanks to the introduction on the market of the three axis autosampler. In light of the above, this contribution describes a novel user-friendly solid-phase microextraction (SPME) off- and on-line platform coupled with gas chromatography and triple quadrupole-mass spectrometry to determine urinary metabolites of polycyclic aromatic hydrocarbons 1- and 2-hydroxy-naphthalene, 9-hydroxy-phenanthrene, 1-hydroxy-pyrene, 3- and 9-hydroxy-benzoantracene, and 3-hydroxy-benzo[a]pyrene. In this new procedure, chromatography’s sensitivity is combined with the user-friendliness of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide on-fiber SPME derivatization using direct immersion sampling; moreover, specific isotope-labelled internal standards provide quantitative accuracy. The detection limits for the seven OH-PAHs ranged from 0.25 to 4.52 ng/L. Intra-(from 2.5 to 3.0%) and inter-session (from 2.4 to 3.9%) repeatability was also evaluated. This method serves to identify suitable risk-control strategies for occupational hygiene conservation programs
Monitoring of air-dispersed formaldehyde and carbonyl compounds as vapors and adsorbed on particulate matter by denuder-filter sampling and gas chromatographic analysis
Carbonyl compounds (CCs) are products present both as vapors and as condensed species adsorbed on the carbonaceous particle matter dispersed in the air of urban areas, due to vehicular traffic and human activities. Chronic exposure to CCs is a potential health risk given the toxicity of these chemicals. The present study reports on the measurement of the concentrations of 14 CCs in air as vapors and 2.5 µm fraction PM by the ENVINT GAS08/16 gas/aerosol sampler, a serial sampler that uses annular denuder, as sampling device. The 14 CCs were derivatized during sampling prior to gas-chromatographic separation and multiple detection by mass spectrometry, nitrogen-phosphorus thermionic, electron capture detection. Outdoor air multiple samples were collected in four locations in the urban area of Florence. The results evidenced that formaldehyde, acetaldehyde, and acetone were the more abundant CCs in the studied areas. The data collected was discussed considering the particle to vapor ratio of each CC found. The CCs pollution picture obtained was tentatively related to the nature and intensity of the traffic transiting by the sampling sites. This approach allowed to determine 14 CCs in both concentrated and diluted samples and is proposed as a tool for investigating outdoor and indoor pollution
- …