88 research outputs found

    ENZO: A Web Tool for Derivation and Evaluation of Kinetic Models of Enzyme Catalyzed Reactions

    Get PDF
    We describe a web tool ENZO (Enzyme Kinetics), a graphical interface for building kinetic models of enzyme catalyzed reactions. ENZO automatically generates the corresponding differential equations from a stipulated enzyme reaction scheme. These differential equations are processed by a numerical solver and a regression algorithm which fits the coefficients of differential equations to experimentally observed time course curves. ENZO allows rapid evaluation of rival reaction schemes and can be used for routine tests in enzyme kinetics. It is freely available as a web tool, at http://enzo.cmm.ki.si

    Enantioselective Phytotoxicity of the Herbicide Imazethapyr on the Response of the Antioxidant System and Starch Metabolism in Arabidopsis thaliana

    Get PDF
    Background: The enantiomers of a chiral compound possess different biological activities, and one of the enantiomers usually shows a higher level of toxicity. Therefore, the exploration of the causative mechanism of enantioselective toxicity is regarded as one of primary goals of biological chemistry. Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting chiral herbicide that has been widely used in recent years with racemate. We investigated the enantioselectivity between R- and S-IM to form reactive oxygen species (ROS) and to regulate antioxidant gene transcription and enzyme activity. Results: Dramatic differences between the enantiomers were observed: the enantiomer of R-IM powerfully induced ROS formation, yet drastically reduced antioxidant gene transcription and enzyme activity, which led to an oxidative stress. The mechanism by which IM affects carbohydrate metabolism in chloroplasts has long remained a mystery. Here we report evidence that enantioselectivity also exists in starch metabolism. The enantiomer of R-IM resulted in the accumulation of glucose, maltose and sucrose in the cytoplasm or the chloroplast and disturbed carbohydrates utilization. Conclusion: The study suggests that R-IM more strongly retarded plant growth than S-IM not only by acting on ALS, but also by causing an imbalance in the antioxidant system and the disturbance of carbohydrate metabolism wit

    Quantifying the inactivation rate constants for the molecular species comprising the catalytic cycle of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase

    No full text
    When an unstable enzyme is incubated with its substrate(s), catalysis may cease before chemical equilibrium is attained. The residual substrate concentrations depend on their initial concentrations, the initial enzymic activity, and the inactivation rate constants for each molecular species that comprise the catalytic cycle. The underlying theory has been elaborated previously for single-substrate reactions and here it is extended to bi-substrate reactions. The theory is illustrated by application to glucose 6-phosphate dehydrogenase, which is unstable when exposed to a low concentration of sodium dodecyl sulphate. It is shown that the ternary complex containing both substrates is resistant to inactivation while each of the remaining complexes undergoes first-order decay. Rate constants for the inactivation of each complex are calculated

    Nonlinear-Regression Analysis of the Time-Course of Ligand-Binding Experiments

    No full text
    The binding and release of hormones and growth factors are often relatively slow processes under biological conditions. Consequently, a knowledge of the underlying rate constants may be of greater physiological relevance than the equilibrium constant. Here we show how, by following a single time course of binding, the rate constants for both binding and release can be determined. The ratio of these rate constants allows the binding constant to be calculated. A nonlinear regression computer program is described which facilitates these calculations and which provides estimates and standard errors of the constants determined. The method is illustrated by the binding of human growth hormone to the human growth hormone binding protein, and the binding of ovine prolactin to the rabbit prolactin receptor

    Properties and functions of the thiamin diphosphate dependent enzyme transketolase

    No full text
    This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose accepters, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals. (C) 1998 Elsevier Science Ltd. All rights reserved

    Identification of the catalytic glutamate in the E1 component of human pyruvate dehydrogenase

    No full text
    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA. The first component (E1) converts pyruvate to bound acetaldehyde using thiamine diphosphate (ThDP) and Mg2+ as cofactors, There is no 3D structure of E1 available but those of other ThDP-dependent enzymes show some similarities including a glutamate residue that assists in ThDP activation. Eukaryotic E1 has an alpha(2)beta(2) structure and the conserved Glu(89) Of the beta-subunit was identified as a possible catalytic residue by sequence alignment. Human E1 was expressed in Escherichia coli and purified. Mutating Glu(89) to glutamine, aspartate and alanine markedly reduces catalytic activity and the affinity for ThDP, consistent with a role as the catalytic glutamate. (C) 1998 Federation of European Biochemical Societies
    corecore