221 research outputs found

    Transport Far From Equilibrium --- Uniform Shear Flow

    Full text link
    The BGK model kinetic equation is applied to spatially inhomogeneous states near steady uniform shear flow. The shear rate of the reference steady state can be large so the states considered include those very far from equilibrium. The single particle distribution function is calculated exactly to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding non-linear hydrodynamic equaitons are obtained and the set of transport coefficients are identified as explicit functions of the shear rate. The spectrum of the linear hydrodynamic equation is studied in detail and qualitative differences from the spectrum for equilibrium fluctuations are discussed. Conditions for instabilities at long wavelengths are identified and disccused.Comment: 32 pages, 1 figure, RevTeX, submitted to Phys. Rev.

    Nonlinear response of electrons to a positive ion

    Full text link
    Electric field dynamics at a positive ion imbedded in an electron gas is considered using a semiclassical description. The dependence of the field autocorrelation function on charge number is studied for strong ion-electron coupling via MD simulation. The qualitative features for larger charge numbers are a decreasing correlation time followed by an increasing anticorrelation. Stopping power and related transport coefficients determined by the time integral of this correlation function result from the competing effects of increasing initial correlations and decreasing dynamical correlations. An interpretation of the MD results is obtained from an effective single particle model showing good agreement with the simulation results.Comment: To be published in the proceedings of the International Workshop on Strongly Coupled Coulomb Systems, Journal of Physics

    Kinetic Theory for Electron Dynamics Near a Positive Ion

    Full text link
    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron - ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron - electron and electron - ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single particle trajectories of the electron - ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron - ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron - ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas.Comment: 30 pages, 5 figures, submitted to Journal of Statistical Mechanics: Theory and Experimen
    corecore