6,587 research outputs found
Casimir-Polder shifts on quantum levitation states
An ultracold atom above a horizontal mirror experiences quantum reflection
from the attractive Casimir-Polder interaction, which holds it against gravity
and leads to quantum levitation states. We analyze this system by using a
Liouville transformation of the Schr\"odinger equation and a Langer coordinate
adapted to problems with a classical turning point. Reflection on the
Casimir-Polder attractive well is replaced by reflection on a repulsive wall
and the problem is then viewed as an ultracold atom trapped inside a cavity
with gravity and Casimir-Polder potentials acting respectively as top and
bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies
of the cavity resonances and propose a new approximate treatment which is
precise enough to discuss spectroscopy experiments aiming at tests of the weak
equivalence principle on antihydrogen. We also discuss the lifetimes by
calculating complex energies associated with cavity resonances.Comment: Accepted in PR
Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology
We present some of the results of a survey aimed at exploring the
asteroseismological potential of the newly-discovered carbon-atmosphere white
dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere
white dwarfs may drive low-order gravity modes. We demonstrate that our
theoretical results are consistent with the recent exciting discovery of
luminosity variations in SDSS J1426+5752 and some null results obtained by a
team of scientists at McDonald Observatory. We also present follow-up
photometric observations carried out by ourselves at the Mount Bigelow 1.6-m
telescope using the new Mont4K camera. The results of follow-up spectroscopic
observations at the MMT are also briefly reported, including the surprising
discovery that SDSS J1426+5752 is not only a pulsating star but that it is also
a magnetic white dwarf with a surface field near 1.2 MG. The discovery of
-mode pulsations in SDSS J1426+5752 is quite significant in itself as it
opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ
Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
Publications of the NASA CELSS (Controlled Ecological Life Support Systems) program
Publications on research sponsored by the NASA CELSS (controlled ecological life support systems) Program are listed. The bibliography is divided into four areas: (1) human requirements; (2) food production; (3) waste management; and (4) system management and control. The 210 references cover the period from the inception of the CELSS Program (1979) to the present, as well as some earlier publications during the development of the CELSS Program
Precise Atmospheric Parameters for the Shortest Period Binary White Dwarfs: Gravitational Waves, Metals, and Pulsations
We present a detailed spectroscopic analysis of 61 low mass white dwarfs and
provide precise atmospheric parameters, masses, and updated binary system
parameters based on our new model atmosphere grids and the most recent
evolutionary model calculations. For the first time, we measure systematic
abundances of He, Ca and Mg for metal-rich extremely low mass white dwarfs and
examine the distribution of these abundances as a function of effective
temperature and mass. Based on our preliminary results, we discuss the
possibility that shell flashes may be responsible for the presence of the
observed He and metals. We compare stellar radii derived from our spectroscopic
analysis to model-independent measurements and find good agreement except for
those white dwarfs with Teff < 10,000 K. We also calculate the expected
gravitational wave strain for each system and discuss their significance to the
eLISA space-borne gravitational wave observatory. Finally, we provide an update
on the instability strip of extremely low mass white dwarf pulsators.Comment: 18 pages, 13 figures, 3 tables, accepted for publication in Ap
Insects: A nutritional alternative
Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed
Accretion and activity on the post-common-envelope binary RR~Cae
Current scenarios for the evolution of interacting close binaries - such as
cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star
angular momentum loss (AML) mechanisms. The coupling of stellar wind with its
magnetic field, i.e., magnetic braking, is the most promising mechanism to
drive AML in these stars. There are basically two properties driving magnetic
braking: the stellar magnetic field and the stellar wind. Understanding the
mechanisms that drive AML therefore requires a comprehensive understanding of
these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M
binary with an orbital period of P=7.29h. The system harbors a metal-rich cool
white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation.
The metallicity of the WD suggests that wind accretion is taking place, which
provides a good opportunity to obtain the mass-loss rate of the M-dwarf
component. We analyzed multi-epoch time-resolved high-resolution spectra of
RRCae in search for traces of magnetic activity and accretion. We selected a
number of well-known activity indicators and studied their short and long-term
behavior. Indirect-imaging tomographic techniques were also applied to provide
the surface brightness distribution of the magnetically active M-dwarf, and
reveals a polar feature similar to those observed in fast-rotating solar-type
stars. The blue part of the spectrum was modeled using a atmosphere model to
constrain the WD properties and its metal enrichment. The latter was used to
improve the determination of the mass-accretion rate from the M-dwarf wind. The
presence of metals in the WD spectrum suggests that this component arises from
accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K
and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex,
and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table
- …