95 research outputs found

    Guide for smart practices to support innovation in smart textiles

    Get PDF
    Smart Textiles for STEM training (Science, Technology, Engineering and Math’s) is an Erasmus+ project aiming to bridge Textile Companies with the Education sector via Smart Textiles Innovation and Training. Industries have been surveyed to analyze the needs for new jobs and skills in Smart textiles, contributing to improve the links with VET Schools training and closing the gap between industry and education. During the project a number of smart textiles examples and prototypes are worked to be transferred to Schools and used by students and teachers, aiming to foster STEM training. This paper presents the results of the survey applied to selected textile companies on Technical and Smart Textiles, based on data collected from 63 textile enterprises in Romania, Belgium, Slovenia, Portugal and Czech Republic. The survey identifies existing opportunities for producing smart textiles in enterprises and forecasting expected occupations and work profiles for young trainees. The guide for smart practices presents the results of this survey and aims to transfer smart practices from enterprises to Vocational Education and Training (VET) schools and young students. Providing real life prototypes and multi-disciplinary working activities on smart textiles will make textile occupations more attractive to young students, and will improve knowledge, skills and employability of VET students in STEM related fields

    Smart education for smart textiles

    Get PDF
    The aim of this paper is to present the main objectives and achievements of the Skills4Smartex project, according to its declared goals. The Erasmus+ project "Smart textiles for STEM training" is funded with support from the European Commission and it is a Strategic partnership - KA2 / Vocational Education and Training (VET), in the field of transfer of innovation from research providers towards textile enterprises & VET schools. The students within technical education acquire basic disciplines, such as mathematics, physics, technical drawing, chemistry, biology, mechanics, but the horizon of the end applications and usefulness of such basic disciplines is often not touchable. In correlation with these facts, the Skills4Smartex project is centred on improving knowledge, skills and employability of VET students in the STEM related fields, by providing the adequate training instruments to understand multidisciplinary working

    Smart textiles to promote multidisciplinary stem training

    Get PDF
    Smart textiles consist of multi-disciplinary knowledge. Disciplines such as physics, mathematics, material science or electrics is needed in order to be able to design and manufacture a smart textiles product. This is why knowledge in smart textiles may be used to showcase high school and university students in basic years of preparation some applications of technical disciplines they are learning. The Erasmus+ project “Smart textiles for STEM training – Skills4Smartex” is a strategic partnership project for Vocational Education and Training aiming to promote additional knowledge and skills for trainees in technical fields, for a broader understanding of interconnections and application of STEM, via smart textiles. Skills4Smartex is an ongoing project within the period Oct. 2018-Sept. 2020, with a partnership of six research providers in textiles www.skills4smartex.eu. The project has three intellectual outputs: the Guide for smart practices (O1), the Course in smart textiles (O2) and the Dedicated e-learning Instrument (O3). The Guide for smart practices consists in the analysis of a survey with 63 textile companies on partnership level and interviews with 18 companies. Main aim of O1 is to transfer from source site to target sites technical and smart textile best practices and the profile of workforce needed for the future textile industry. The needs analysis achieved within O1will serve to conceive the Course for smart textiles with 42 modules (O2), to be accessed via the Dedicated e-learning Instrument (O3). All outputs are available with free access on the e-learning platform: www.adva2tex.eu/portal

    Energy Consumption Comparison Between Macro-Micro and Public Femto Deployment in a Plausible LTE Network

    Get PDF
    We study the energy consumptions of two strategies that increase the capacity of an LTE network: (1) the deployment of redundant macro and micro base stations by the operator at locations where the traffic is high, and (2) the deployment of publicly accessible femto base stations by home users. Previous studies show the deployment of publicly accessible residential femto base stations is considerably more energy efficient; however, the results are proposed using an abstracted model of LTE networks, where the coverage constraint was neglected in the study, as well as some other important physical and traffic layer specifications of LTE networks. We study a realistic scenario where coverage is provided by a set of non-redundant macro-micro base stations and additional capacity is provided by redundant macro-micro base stations or by femto base stations. We quantify the energy consumption of macro-micro and femto deployment strategies by using a simulation of a plausible LTE deployment in a mid-size metropolitan area, based on data obtained from an operator and using detailed models of heterogeneous devices, traffic, and physical layers. The metrics of interest are operator-energy-consumption/total-energy-consumption per unit of network capacity. For the scenarios we studied, we observe the following: (1) There is no significant difference between operator energy consumption of femto and macro-micro deployment strategies. From the point of view of society, i.e. total energy consumption, macro-micro deployment is even more energy efficient in some cases. This differs from the previous findings, which compared the energy consumption of femto and macro-micro deployment strategies, and found that femto deployment is considerably more energy efficient. (2) The deployment of femto base stations has a positive effect on mobile-terminal energy consumption; however, it is not significant compared to the macro-micro deployment strategy. (3) The energy saving that could be obtained by making macro and micro base stations more energy proportional is much higher than that of femto deployment

    Digital skills among youth: a dataset from a three-wave longitudinal survey in six European countries

    Get PDF
    This dataset provides longitudinal survey data from a European project, ySKILLS, which was focused on the role of digital skills in youths’ development. It contains data from 10,821 participants from Grades 6-10 (in Wave 1) in Estonia, Finland, Germany, Italy, Poland, and Portugal. The data was collected between Spring 2021 and Spring 2023, the participants were recruited through schools, where the data collection also took place, except for online data collections due to restrictions caused by COVID-19. The dataset is novel in its multidimensional approach to the construct of digital literacy. It provides insight into the development of digital skills in youth and the role of digital skills and internet usage in youths’ positive and negative online experiences and wellbeing. It also contains data that allows for the analysis of the role of digital skills in class networks. The data are beneficial for researchers interested in the examination of youths’ online skills, internet usage, online experiences, and wellbeing from a longitudinal perspective

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link
    corecore