400 research outputs found

    Optimization-Based Linear Network Coding for General Connections of Continuous Flows

    Get PDF
    For general connections, the problem of finding network codes and optimizing resources for those codes is intrinsically difficult and little is known about its complexity. Most of the existing solutions rely on very restricted classes of network codes in terms of the number of flows allowed to be coded together, and are not entirely distributed. In this paper, we consider a new method for constructing linear network codes for general connections of continuous flows to minimize the total cost of edge use based on mixing. We first formulate the minimumcost network coding design problem. To solve the optimization problem, we propose two equivalent alternative formulations with discrete mixing and continuous mixing, respectively, and develop distributed algorithms to solve them. Our approach allows fairly general coding across flows and guarantees no greater cost than any solution without network coding.Comment: 1 fig, technical report of ICC 201

    The large deviation principle for the On/Off Weibull Sojourn Process

    Get PDF
    This article proves that the on-off renewal process with Weibull sojourn times satisfies the large deviation principle on a non-linear scale. Unusually, its rate function is not convex. Apart from on a compact set, the rate function is infinite, which enables us to construct natural processes that satisfy the LDP with non-trivial rate functions on more than one time scale

    Confident decoding with GRAND

    Full text link
    We establish that during the execution of any Guessing Random Additive Noise Decoding (GRAND) algorithm, an interpretable, useful measure of decoding confidence can be evaluated. This measure takes the form of a log-likelihood ratio (LLR) of the hypotheses that, should a decoding be found by a given query, the decoding is correct versus its being incorrect. That LLR can be used as soft output for a range of applications and we demonstrate its utility by showing that it can be used to confidently discard likely erroneous decodings in favor of returning more readily managed erasures. As an application, we show that feature can be used to compromise the physical layer security of short length wiretap codes by accurately and confidently revealing a proportion of a communication when code-rate is above capacity

    Guessing a password over a wireless channel (on the effect of noise non-uniformity)

    Get PDF
    A string is sent over a noisy channel that erases some of its characters. Knowing the statistical properties of the string's source and which characters were erased, a listener that is equipped with an ability to test the veracity of a string, one string at a time, wishes to fill in the missing pieces. Here we characterize the influence of the stochastic properties of both the string's source and the noise on the channel on the distribution of the number of attempts required to identify the string, its guesswork. In particular, we establish that the average noise on the channel is not a determining factor for the average guesswork and illustrate simple settings where one recipient with, on average, a better channel than another recipient, has higher average guesswork. These results stand in contrast to those for the capacity of wiretap channels and suggest the use of techniques such as friendly jamming with pseudo-random sequences to exploit this guesswork behavior.Comment: Asilomar Conference on Signals, Systems & Computers, 201

    Logarithmic asymptotics for unserved messages at a FIFO

    Get PDF
    We consider an infinite{buffered single server First In, First Out (FIFO) queue. Messages arrives at stochastic intervals and take random amounts of time to process. Logarithmic asymptotics are proved for the tail of the distribution of the number of messages awaiting service, under general large deviation and stability assumptions, and formulae presented for the asymptotic decay rate

    Tail asymptotics for busy periods

    Get PDF
    The busy period for a queue is cast as the area swept under the random walk until it first returns to zero, BB. Encompassing non-i.i.d. increments, the large-deviations asymptotics of BB is addressed, under the assumption that the increments satisfy standard conditions, including a negative drift. The main conclusions provide insight on the probability of a large busy period, and the manner in which this occurs: I) The scaled probability of a large busy period has the asymptote, for any b>0b>0, \lim_{n\to\infty} \frac{1}{\sqrt{n}} \log P(B\geq bn) = -K\sqrt{b}, \hbox{where} \quad K = 2 \sqrt{-\int_0^{\lambda^*} \Lambda(\theta) d\theta}, \quad \hbox{with λ=sup{θ:Λ(θ)0}\lambda^*=\sup\{\theta:\Lambda(\theta)\leq0\},} and with Λ\Lambda denoting the scaled cumulant generating function of the increments process. II) The most likely path to a large swept area is found to be a simple rescaling of the path on [0,1][0,1] given by, [\psi^*(t) = -\Lambda(\lambda^*(1-t))/\lambda^*.] In contrast to the piecewise linear most likely path leading the random walk to hit a high level, this is strictly concave in general. While these two most likely paths have very different forms, their derivatives coincide at the start of their trajectories, and at their first return to zero. These results partially answer an open problem of Kulick and Palmowski regarding the tail of the work done during a busy period at a single server queue. The paper concludes with applications of these results to the estimation of the busy period statistics (λ,K)(\lambda^*, K) based on observations of the increments, offering the possibility of estimating the likelihood of a large busy period in advance of observing one.Comment: 15 pages, 5 figure
    corecore