417 research outputs found
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Astrophysics from data analysis of spherical gravitational wave detectors
The direct detection of gravitational waves will provide valuable
astrophysical information about many celestial objects. Also, it will be an
important test to general relativity and other theories of gravitation. The
gravitational wave detector SCHENBERG has recently undergone its first test
run. It is expected to have its first scientific run soon. In this work the
data analysis system of this spherical, resonant mass detector is tested
through the simulation of the detection of gravitational waves generated during
the inspiralling phase of a binary system. It is shown from the simulated data
that it is not necessary to have all six transducers operational in order to
determine the source's direction and the wave's amplitudes.Comment: 8 pages and 3 figure
Implementation of Monte-Carlo transport in the general relativistic SpEC code
Neutrino transport and neutrino-matter interactions are known to play an important role in the evolution of neutron star mergers, and of their post-merger remnants. Neutrinos cool remnants, drive post-merger winds, and deposit energy in the low-density polar regions where relativistic jets may eventually form. Neutrinos also modify the composition of the ejected material, impacting the outcome of nucleosynthesis in merger outflows and the properties of the optical/infrared transients that they power (kilonovae). So far, merger simulations have largely relied on approximate treatments of the neutrinos (leakage, moments) that simplify the equations of radiation transport in a way that makes simulations more affordable, but also introduces unquantifiable errors in the results. To improve on these methods, we recently published a first simulation of neutron star mergers using a low-cost Monte-Carlo algorithm for neutrino radiation transport. Our transport code limits costs in optically thick regions by placing a hard ceiling on the value of the absorption opacity of the fluid, yet all approximations made within the code are designed to vanish in the limit of infinite numerical resolution. We provide here an in-depth description of this algorithm, of its implementation in the SpEC merger code, and of the expected impact of our approximations in optically thick regions. We argue that the latter is a subdominant source of error at the accuracy reached by current simulations, and for the interactions currently included in our code. We also provide tests of the most important features of this code
Smooth equations of state for high-accuracy simulations of neutron star binaries
High-accuracy numerical simulations of merging neutron stars play an important role in testing and calibrating the waveform models used by gravitational wave observatories. Obtaining high-accuracy waveforms at a reasonable computational cost, however, remains a significant challenge. One issue is that high-order convergence of the solution requires the use of smooth evolution variables, while many of the equations of state used to model the neutron star matter have discontinuities, typically in the first derivative of the pressure. Spectral formulations of the equation of state have been proposed as a potential solution to this problem. Here, we report on the numerical implementation of spectral equations of state in the spectral Einstein code. We show that, in our code, spectral equations of state allow for high-accuracy simulations at a lower computational cost than commonly used “piecewise polytrope” equations state. We also demonstrate that not all spectral equations of state are equally useful: different choices for the low-density part of the equation of state can significantly impact the cost and accuracy of simulations. As a result, simulations of neutron star mergers present us with a trade-off between the cost of simulations and the physical realism of the chosen equation of state
Collapse and black hole formation in magnetized, differentially rotating neutron stars
The capacity to model magnetohydrodynamical (MHD) flows in dynamical,
strongly curved spacetimes significantly extends the reach of numerical
relativity in addressing many problems at the forefront of theoretical
astrophysics. We have developed and tested an evolution code for the coupled
Einstein-Maxwell-MHD equations which combines a BSSN solver with a high
resolution shock capturing scheme. As one application, we evolve magnetized,
differentially rotating neutron stars under the influence of a small seed
magnetic field. Of particular significance is the behavior found for
hypermassive neutron stars (HMNSs), which have rest masses greater the mass
limit allowed by uniform rotation for a given equation of state. The remnant of
a binary neutron star merger is likely to be a HMNS. We find that magnetic
braking and the magnetorotational instability lead to the collapse of HMNSs and
the formation of rotating black holes surrounded by massive, hot accretion tori
and collimated magnetic field lines. Such tori radiate strongly in neutrinos,
and the resulting neutrino-antineutrino annihilation (possibly in concert with
energy extraction by MHD effects) could provide enough energy to power
short-hard gamma-ray bursts. To explore the range of outcomes, we also evolve
differentially rotating neutron stars with lower masses and angular momenta
than the HMNS models. Instead of collapsing, the non-hypermassive models form
nearly uniformly rotating central objects which, in cases with significant
angular momentum, are surrounded by massive tori.Comment: Submitted to a special issue of Classical and Quantum Gravity based
around the New Frontiers in Numerical Relativity meeting at the Albert
Einstein Institute, Potsdam, July 17-21, 200
Polytropic neutron star - black hole merger simulations with a Paczynski-Wiita potential
Context: Mergers of neutron stars (NS) and black holes (BH) are among the
strongest sources of gravitational waves and are potential central engines for
short gamma-ray bursts. Aims: We aim to compare the general relativistic (GR)
results by other groups with Newtonian calculations of models with equivalent
parameters. We vary the mass ratios between NS and BH and the compactness of
the NS. The mass of the NS is 1.4 M_sol. We compare the dynamics in the
parameter-space regions where the NS is expected to reach the innermost stable
circular orbit (ISCO) before being tidally disrupted (mass shedding, MS) and
vice versa. Methods: The hydrodynamics is evolved by a Newtonian PPM scheme
with four levels of nested grids. We use a polytropic EoS (Gamma=2), as was
done in the GR simulations. However, instead of full GR we use a Newtonian
potential supplemented by a Paczynski-Wiita-Artemova potential for the BH, both
disregarding and including rotation of the BH. Results: If the NS is compact
(C=0.18) it is accreted by the BH more quickly, and only a small amount of mass
remains outside the BH. If the mass ratio is small (Q=2 or 3) or the NS is less
compact (C=0.16 or less) the NS is tidally torn apart before being accreted.
Although most of the mass is absorbed by the BH, some 0.1 M_sol remain in a
tidal arm. For small mass ratios the tidal arm can wrap around the BH to form a
thick disk. When including the effects of BH spin-up or spin-down by the
accreted matter, more mass remains in the surroundings (0.2-0.3 M_sol).
Conclusions: Although details and quantitative results differ, the general
trends of our Newtonian calculations are similar to the GR calculations. A
clear delimiting line that separates ISCO from the MS cases is not found.
Inclusion of BH rotation as well as sufficient numerical resolution are
extremely important.Comment: 12 pages, 9 figures. Astronomy & Astrophysics, accepted version,
including some minor revisions requested by the referee and some language
improvements
Making a splash with water repellency
A 'splash' is usually heard when a solid body enters water at large velocity.
This phenomena originates from the formation of an air cavity resulting from
the complex transient dynamics of the free interface during the impact. The
classical picture of impacts on free surfaces relies solely on fluid inertia,
arguing that surface properties and viscous effects are negligible at
sufficiently large velocities. In strong contrast to this large-scale
hydrodynamic viewpoint, we demonstrate in this study that the wettability of
the impacting body is a key factor in determining the degree of splashing. This
unexpected result is illustrated in Fig.1: a large cavity is evident for an
impacting hydrophobic sphere (1.b), contrasting with the hydrophilic sphere's
impact under the very same conditions (1.a). This unforeseen fact is
furthermore embodied in the dependence of the threshold velocity for air
entrainment on the contact angle of the impacting body, as well as on the ratio
between the surface tension and fluid viscosity, thereby defining a critical
capillary velocity. As a paradigm, we show that superhydrophobic impacters make
a big 'splash' for any impact velocity. This novel understanding provides a new
perspective for impacts on free surfaces, and reveals that modifications of the
detailed nature of the surface -- involving physico-chemical aspects at the
nanometric scales -- provide an efficient and versatile strategy for
controlling the water entry of solid bodies at high velocity.Comment: accepted for publication in Nature Physic
- …