325 research outputs found
The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants
The merger of two neutron stars leaves behind a rapidly spinning hypermassive
object whose survival is believed to depend on the maximum mass supported by
the nuclear equation of state, angular momentum redistribution by
(magneto-)rotational instabilities, and spindown by gravitational waves. The
high temperatures (~5-40 MeV) prevailing in the merger remnant may provide
thermal pressure support that could increase its maximum mass and, thus, its
life on a neutrino-cooling timescale. We investigate the role of thermal
pressure support in hypermassive merger remnants by computing sequences of
spherically-symmetric and axisymmetric uniformly and differentially rotating
equilibrium solutions to the general-relativistic stellar structure equations.
Using a set of finite-temperature nuclear equations of state, we find that hot
maximum-mass critically spinning configurations generally do not support larger
baryonic masses than their cold counterparts. However, subcritically spinning
configurations with mean density of less than a few times nuclear saturation
density yield a significantly thermally enhanced mass. Even without decreasing
the maximum mass, cooling and other forms of energy loss can drive the remnant
to an unstable state. We infer secular instability by identifying approximate
energy turning points in equilibrium sequences of constant baryonic mass
parametrized by maximum density. Energy loss carries the remnant along the
direction of decreasing gravitational mass and higher density until instability
triggers collapse. Since configurations with more thermal pressure support are
less compact and thus begin their evolution at a lower maximum density, they
remain stable for longer periods after merger.Comment: 20 pages, 12 figures. Accepted for publication in Ap
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Interaction between gravitational waves and plasma waves in the Vlasov description
The nonlinear interaction between electromagnetic, electrostatic and
gravitational waves in a Vlasov plasma is reconsidered. By using a orthonormal
tetrad description the three-wave coupling coefficients are computed. Comparing
with previous results, it is found that the present theory leads to algebraic
expression that are much reduced, as compared to those computed using a
coordinate frame formalism. Furthermore, here we calculate the back-reaction on
the gravitational waves, and a simple energy conservation law is deduced in the
limit of a cold plasma.Comment: 9 pages, uses jpp.cl
Collapse and black hole formation in magnetized, differentially rotating neutron stars
The capacity to model magnetohydrodynamical (MHD) flows in dynamical,
strongly curved spacetimes significantly extends the reach of numerical
relativity in addressing many problems at the forefront of theoretical
astrophysics. We have developed and tested an evolution code for the coupled
Einstein-Maxwell-MHD equations which combines a BSSN solver with a high
resolution shock capturing scheme. As one application, we evolve magnetized,
differentially rotating neutron stars under the influence of a small seed
magnetic field. Of particular significance is the behavior found for
hypermassive neutron stars (HMNSs), which have rest masses greater the mass
limit allowed by uniform rotation for a given equation of state. The remnant of
a binary neutron star merger is likely to be a HMNS. We find that magnetic
braking and the magnetorotational instability lead to the collapse of HMNSs and
the formation of rotating black holes surrounded by massive, hot accretion tori
and collimated magnetic field lines. Such tori radiate strongly in neutrinos,
and the resulting neutrino-antineutrino annihilation (possibly in concert with
energy extraction by MHD effects) could provide enough energy to power
short-hard gamma-ray bursts. To explore the range of outcomes, we also evolve
differentially rotating neutron stars with lower masses and angular momenta
than the HMNS models. Instead of collapsing, the non-hypermassive models form
nearly uniformly rotating central objects which, in cases with significant
angular momentum, are surrounded by massive tori.Comment: Submitted to a special issue of Classical and Quantum Gravity based
around the New Frontiers in Numerical Relativity meeting at the Albert
Einstein Institute, Potsdam, July 17-21, 200
Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters
We present a first exploration of the results of neutron star-black hole
mergers using black hole masses in the most likely range of
, a neutrino leakage scheme, and a modeling of the neutron
star material through a finite-temperature nuclear-theory based equation of
state. In the range of black hole spins in which the neutron star is tidally
disrupted (), we show that the merger consistently
produces large amounts of cool (), unbound,
neutron-rich material (). A comparable
amount of bound matter is initially divided between a hot disk () with typical neutrino luminosity , and a cooler tidal tail. After a short period of rapid
protonization of the disk lasting , the accretion disk cools
down under the combined effects of the fall-back of cool material from the
tail, continued accretion of the hottest material onto the black hole, and
neutrino emission. As the temperature decreases, the disk progressively becomes
more neutron-rich, with dimmer neutrino emission. This cooling process should
stop once the viscous heating in the disk (not included in our simulations)
balances the cooling. These mergers of neutron star-black hole binaries with
black hole masses and black hole spins high
enough for the neutron star to disrupt provide promising candidates for the
production of short gamma-ray bursts, of bright infrared post-merger signals
due to the radioactive decay of unbound material, and of large amounts of
r-process nuclei.Comment: 20 pages, 19 figure
Astrophysics from data analysis of spherical gravitational wave detectors
The direct detection of gravitational waves will provide valuable
astrophysical information about many celestial objects. Also, it will be an
important test to general relativity and other theories of gravitation. The
gravitational wave detector SCHENBERG has recently undergone its first test
run. It is expected to have its first scientific run soon. In this work the
data analysis system of this spherical, resonant mass detector is tested
through the simulation of the detection of gravitational waves generated during
the inspiralling phase of a binary system. It is shown from the simulated data
that it is not necessary to have all six transducers operational in order to
determine the source's direction and the wave's amplitudes.Comment: 8 pages and 3 figure
Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger
Black hole-torus systems from compact binary mergers are possible engines for
gamma-ray bursts (GRBs). During the early evolution of the post-merger remnant,
the state of the torus is determined by a combination of neutrino cooling and
magnetically-driven heating processes, so realistic models must include both
effects. In this paper, we study the post-merger evolution of a magnetized
black hole-neutron star binary system using the Spectral Einstein Code (SpEC)
from an initial post-merger state provided by previous numerical relativity
simulations. We use a finite-temperature nuclear equation of state and
incorporate neutrino effects in a leakage approximation. To achieve the needed
accuracy, we introduce improvements to SpEC's implementation of
general-relativistic magnetohydrodynamics (MHD), including the use of
cubed-sphere multipatch grids and an improved method for dealing with
supersonic accretion flows where primitive variable recovery is difficult. We
find that a seed magnetic field triggers a sustained source of heating, but its
thermal effects are largely cancelled by the accretion and spreading of the
torus from MHD-related angular momentum transport. The neutrino luminosity
peaks at the start of the simulation, and then drops significantly over the
first 20\,ms but in roughly the same way for magnetized and nonmagnetized
disks. The heating rate and disk's luminosity decrease much more slowly
thereafter. These features of the evolution are insensitive to grid structure
and resolution, formulation of the MHD equations, and seed field strength,
although turbulent effects are not fully convergedComment: 17 pages, 18 figure
Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state
Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers
- …