347 research outputs found

    Capability of common SNPs to tag rare variants

    Get PDF
    Genome-wide association studies are based on the linkage disequilibrium pattern between common tagging single-nucleotide polymorphisms (SNPs) (i.e., SNPs having only common alleles) and true causal variants, and association studies with rare SNP alleles aim to detect rare causal variants. To better understand and explain the findings from both types of studies and to provide clues to improve the power of an association study with only common SNPs genotyped, we study the correlation between common SNPs and the presence of rare alleles within a region in the genome and look at the capability of common SNPs in strong linkage disequilibrium with each other to capture single rare alleles. Our results indicate that common SNPs can, to some extent, tag the presence of rare alleles and that including SNPs in strong linkage disequilibrium with each other among the tagging SNPs helps to detect rare alleles

    Genomic architecture of inflammatory bowel disease in five families with multiple affected individuals.

    Full text link
    Currently, the best clinical predictor for inflammatory bowel disease (IBD) is family history. Over 163 sequence variants have been associated with IBD in genome-wide association studies, but they have weak effects and explain only a fraction of the observed heritability. It is expected that additional variants contribute to the genomic architecture of IBD, possibly including rare variants with effect sizes larger than the identified common variants. Here we applied a family study design and sequenced 38 individuals from five families, under the hypothesis that families with multiple IBD-affected individuals harbor one or more risk variants that (i) are shared among affected family members, (ii) are rare and (iii) have substantial effect on disease development. Our analysis revealed not only novel candidate risk variants but also high polygenic risk scores for common known risk variants in four out of the five families. Functional analysis of our top novel variant in the remaining family, a rare missense mutation in the ubiquitin ligase TRIM11, suggests that it leads to increased nuclear factor of kappa light chain enhancer in B-cells (NF-κB) signaling. We conclude that an accumulation of common weak-effect variants accounts for the high incidence of IBD in most, but not all families we analyzed and that a family study design can identify novel rare variants conferring risk for IBD with potentially large effect size, such as the TRIM11 p.H414Y mutation

    Collapsing-based and kernel-based single-gene analyses applied to Genetic Analysis Workshop 17 mini-exome data

    Get PDF
    Recently there has been great interest in identifying rare variants associated with common diseases. We apply several collapsing-based and kernel-based single-gene association tests to Genetic Analysis Workshop 17 (GAW17) rare variant association data with unrelated individuals without knowledge of the simulation model. We also implement modified versions of these methods using additional information, such as minor allele frequency (MAF) and functional annotation. For each of four given traits provided in GAW17, we use the Bayesian mixed-effects model to estimate the phenotypic variance explained by the given environmental and genotypic data and to infer an individual-specific genetic effect to use directly in single-gene association tests. After obtaining information on the GAW17 simulation model, we compare the performance of all methods and examine the top genes identified by those methods. We find that collapsing-based methods with weights based on MAFs are sensitive to the “lower MAF, larger effect size” assumption, whereas kernel-based methods are more robust when this assumption is violated. In addition, many false-positive genes identified by multiple methods often contain variants with exactly the same genotype distribution as the causal variants used in the simulation model. When the sample size is much smaller than the number of rare variants, it is more likely that causal and noncausal variants will share the same or similar genotype distribution. This likely contributes to the low power and large number of false-positive results of all methods in detecting causal variants associated with disease in the GAW17 data set

    Power analysis for genome-wide association studies

    Get PDF
    Abstract Background Genome-wide association studies are a promising new tool for deciphering the genetics of complex diseases. To choose the proper sample size and genotyping platform for such studies, power calculations that take into account genetic model, tag SNP selection, and the population of interest are required. Results The power of genome-wide association studies can be computed using a set of tag SNPs and a large number of genotyped SNPs in a representative population, such as available through the HapMap project. As expected, power increases with increasing sample size and effect size. Power also depends on the tag SNPs selected. In some cases, more power is obtained by genotyping more individuals at fewer SNPs than fewer individuals at more SNPs. Conclusion Genome-wide association studies should be designed thoughtfully, with the choice of genotyping platform and sample size being determined from careful power calculations.</p

    Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    Get PDF
    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family

    Primary sclerosing cholangitis

    Get PDF
    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease of unknown aetiology characterised by inflammation and fibrosis of the biliary tree. The mean age at diagnosis is 40 years and men are affected twice as often as women. There is a reported annual incidence of PSC of 0.9–1.31/100,000 and point prevalence of 8.5–13.6/100,000. The onset of PSC is usually insidious and many patients are asymptomatic at diagnosis or have mild symptoms only such as fatigue, abdominal discomfort and pruritus In late stages, splenomegaly and jaundice may be a feature. In most, the disease progresses to cirrhosis and liver failure. Cholangiocarcinoma develops in 8–30% of patients. PSC is thought to be immune mediated and is often associated with inflammatory bowel disease, especially ulcerative colitis. The disease is diagnosed on typical cholangiographic and histological findings and after exclusion of secondary sclerosing cholangitis. Median survival has been estimated to be 12 years from diagnosis in symptomatic patients. Patients who are asymptomatic at diagnosis, the majority of whom will develop progressive disease, have a survival rate greater than 70% at 16 years after diagnosis. Liver transplantation remains the only effective therapeutic option for patients with end-stage liver disease from PSC, although high dose ursodeoxycholic acid may have a beneficial effect

    On Quality Control Measures in Genome-Wide Association Studies: A Test to Assess the Genotyping Quality of Individual Probands in Family-Based Association Studies and an Application to the HapMap Data

    Get PDF
    Allele transmissions in pedigrees provide a natural way of evaluating the genotyping quality of a particular proband in a family-based, genome-wide association study. We propose a transmission test that is based on this feature and that can be used for quality control filtering of genome-wide genotype data for individual probands. The test has one degree of freedom and assesses the average genotyping error rate of the genotyped SNPs for a particular proband. As we show in simulation studies, the test is sufficiently powerful to identify probands with an unreliable genotyping quality that cannot be detected with standard quality control filters. This feature of the test is further exemplified by an application to the third release of the HapMap data. The test is ideally suited as the final layer of quality control filters in the cleaning process of genome-wide association studies. It identifies probands with insufficient genotyping quality that were not removed by standard quality control filtering

    Evidence for Significant Overlap between Common Risk Variants for Crohn's Disease and Ankylosing Spondylitis

    Get PDF
    BACKGROUND: A multicenter genome-wide association scan for Crohn's Disease (CD) has recently reported 40 CD susceptibility loci, including 29 novel ones (19 significant and 10 putative). To gain insight into the genetic overlap between CD and ankylosing spondylitis (AS), these markers were tested for association in AS patients. PRINCIPAL FINDINGS: Two previously established associations, namely with the MHC and IL23R loci, were confirmed. In addition, rs2872507, which maps to a locus associated with asthma and influences the expression of the ORMDL3 gene in lymphoblastoid cells, showed a significant association with AS (p = 0.03). In gut biopsies of AS and CD patients, ORMDL3 expression was not significantly different from controls and no correlation was found with the rs2872507 genotype (Spearman's rho: -0.067). The distribution of p-values for the remaining 36 SNPs was significantly skewed towards low p-values unless the top 5 ranked SNPs (ORMDL3, NKX2-3, PTPN2, ICOSLG and MST1) were excluded from the analysis. CONCLUSIONS: Association analysis using risk variants for CD led to the identification of a new risk variant associated with AS (ORMDL3), underscoring a role for ER stress in AS. In addition, two known and five potentially relevant associations were detected, contributing to common susceptibility of CD and AS
    corecore