4 research outputs found

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells

    Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector

    Get PDF
    Patients with the most common and aggressive form of high-grade glioma, glioblastoma multiforme, have poor prognosis and few treatment options. In 2 immunocompetent mouse brain tumor models (CT26-BALB/c and Tu-2449-B6C3F1), we showed that a nonlytic retroviral replicating vector (Toca 511) stably delivers an optimized cytosine deaminase prodrug activating gene to the tumor lesion and leads to long-term survival after treatment with 5-fluorocytosine (5-FC). Survival benefit is dose dependent for both vector and 5-FC, and as few as 4 cycles of 5-FC dosing after Toca 511 therapy provides significant survival advantage. In the virally permissive CT26-BALB/c model, spread of Toca 511 to other tissues, particularly lymphoid tissues, is detectable by polymerase chain reaction (PCR) over a wide range of levels. In the Tu-2449-B6C3F1 model, Toca 511 PCR signal in nontumor tissues is much lower, spread is not always observed, and when observed, is mainly detected in lymphoid tissues at low levels. The difference in vector genome spread correlates with a more effective antiviral restriction element, APOBEC3, present in the B6C3F1 mice. Despite these differences, neither strain showed signs of treatment-related toxicity. These data support the concept that, in immunocompetent animals, a replicating retroviral vector carrying a prodrug activating gene (Toca 511) can spread through a tumor mass, leading to selective elimination of the tumor after prodrug administration, without local or systemic pathology. This concept is under investigation in an ongoing phase I/II clinical trial of Toca 511 in combination with 5-FC in patients with recurrent high-grade glioma (www.clinicaltrials.gov NCT01156584)
    corecore