288 research outputs found

    The novel genus, ‘Candidatus Phosphoribacter’, previously identified as Tetrasphaera, is the dominant polyphosphate accumulating lineage in EBPR wastewater treatment plants worldwide

    Get PDF
    The bacterial genus Tetrasphaera encompasses abundant polyphosphate accumulating organisms (PAOs) that are responsible for enhanced biological phosphorus removal (EBPR) in wastewater treatment plants. Recent analyses of genomes from pure cultures revealed that 16S rRNA genes cannot resolve the lineage, and that Tetrasphaera spp. are from several different genera within the Dermatophilaceae. Here, we examine 14 recently recovered high-quality metagenome-assembled genomes from wastewater treatment plants containing full-length 16S rRNA genes identified as Tetrasphaera, 11 of which belong to the uncultured Tetrasphaera clade 3. We find that this clade represents two distinct genera, named here Ca. Phosphoribacter and Ca. Lutibacillus, and reveal that the widely used model organism Tetrasphaera elongata is less relevant for physiological predictions of this uncultured group. Ca. Phosphoribacter incorporates species diversity unresolved at the 16S rRNA gene level, with the two most abundant and often co-occurring species encoding identical V1-V3 16S rRNA gene amplicon sequence variants but different metabolic capabilities, and possibly, niches. Both Ca. P. hodrii and Ca. P. baldrii were visualised using fluorescence in situ hybridisation (FISH), and PAO capabilities were confirmed with FISH-Raman microspectroscopy and phosphate cycling experiments. Ca. Phosphoribacter represents the most abundant former Tetrasphaera lineage and PAO in EPBR systems in Denmark and globally

    Switching between dynamic states in intermediate-length Josephson junctions

    Get PDF
    The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained

    Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus "Candidatus Accumulibacter"

    Get PDF
    “Candidatus Accumulibacter” was the first microorganism identified as a polyphosphate-accumulating organism (PAO) important for phosphorus removal from wastewater. Members of this genus are diverse, and the current phylogeny and taxonomic framework appear complicated, with most publicly available genomes classified as “Candidatus Accumulibacter phosphatis,” despite notable phylogenetic divergence. The ppk1 marker gene allows for a finer-scale differentiation into different “types” and “clades”; nevertheless, taxonomic assignments remain inconsistent across studies. Therefore, a comprehensive reevaluation is needed to establish a common understanding of this genus, in terms of both naming and basic conserved physiological traits. Here, we provide this reassessment using a comparison of genome, ppk1, and 16S rRNA gene-based approaches from comprehensive data sets. We identified 15 novel species, along with “Candidatus Accumulibacter phosphatis,” “Candidatus Accumulibacter delftensis,” and “Candidatus Accumulibacter aalborgensis.” To compare the species in situ, we designed new species-specific fluorescence in situ hybridization (FISH) probes and revealed their morphology and arrangement in activated sludge. Based on the MiDAS global survey, “Ca. Accumulibacter” species were widespread in wastewater treatment plants (WWTPs) with phosphorus removal, indicating process design as a major driver for their abundance. Genome mining for PAO-related pathways and FISH-Raman microspectroscopy confirmed the potential for PAO metabolism in all “Ca. Accumulibacter” species, with detection in situ of the typical PAO storage polymers. Genome annotation further revealed differences in the nitrate/nitrite reduction pathways. This provides insights into the niche differentiation of these lineages, potentially explaining their coexistence in the same ecosystem while contributing to overall phosphorus and nitrogen removal. IMPORTANCE “Candidatus Accumulibacter” is the most studied PAO, with a primary role in biological nutrient removal. However, the species-level taxonomy of this lineage is convoluted due to the use of different phylogenetic markers or genome sequencing approaches. Here, we redefined the phylogeny of these organisms, proposing a comprehensive approach which could be used to address the classification of other diverse and uncultivated lineages. Using genome-resolved phylogeny, compared to phylogeny based on the 16S rRNA gene and other phylogenetic markers, we obtained a higher-resolution taxonomy and established a common understanding of this genus. Furthermore, genome mining of genes and pathways of interest, validated in situ by application of a new set of FISH probes and Raman microspectroscopy, provided additional high-resolution metabolic insights into these organisms

    Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs

    Get PDF
    Candidatus Microthrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species, Ca. M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigate Ca. Microthrix spp. diversity, distribution, and factors affecting their global presence. Only two species were abundant across the world confirming low diversity of the genus: the dominant Ca. M. parvicella and an unknown species typically present along with Ca. M. parvicella, although usually in lower abundances. Both species were mostly found in Europe at low-to-moderate temperatures and their growth was favored in municipal WWTPs with advanced process designs. As no isolate is available for the novel species, we propose the name “Candidatus Microthrix subdominans.” Ten high-quality metagenome-assembled genomes recovered from Danish WWTPs, including 6 representing the novel Ca. M. subdominans, demonstrated high genetic similarity between the two species with a likely preference for lipids, a putative capability to reduce nitrate and nitrite, and the potential to store lipids and poly-P. Ca. M. subdominans had a potentially more versatile metabolism including additional sugar transporters, higher oxygen tolerance, and the potential to use carbon monoxide as energy source. Newly designed fluorescence in situ hybridization probes revealed similar filamentous morphology for both species. Raman microspectroscopy was used to quantify the in situ levels of intracellular poly-P. Despite the observed similarities in their physiology (both by genomes and in situ), the two species showed different seasonal dynamics in Danish WWTPs through a 13-years survey, possibly indicating occupation of slightly different niches. The genomic information provides the basis for future research into in situ gene expression and regulation, while the new FISH probes provide a useful tool for further characterization in situ. This study is an important step toward understanding the ecology of Ca. Microthrix in WWTPs, which may eventually lead to optimization of control strategies for its growth in this ecosystem

    Twisted fallopian tube in pregnancy: a case report

    Get PDF
    BACKGROUND: Isolated twisted fallopian tube is an uncommon event, isolated twisted fallopian tube in pregnancy is also very rare. The diagnosis is often difficult and established during the operation. The right fallopian tube is most common affected. CASE PRESENTATION: We report an uncommon twisted left fallopian tube in pregnancy. A 34-year-old G(3)P(2) 28 weeks pregnant woman presented with acute left lower abdominal pain. The clinical and ultrasonographic findings led to diagnosis of twisted left ovarian cyst. Emergency exploratory laparotomy was performed. A twisted left fallopian tube and paratubal cyst was noted and left salpingectomy was performed. The postoperative course was uneventful and the pregnancy continued until term without complication. CONCLUSIONS: Although isolated twisted fallopian tube during pregnancy is very rare, it should be included in the differential diagnosis of acute abdomen in pregnancy. Early surgical intervention will decrease obstetric morbidity and may allow preservation of the fallopian tube
    • …
    corecore