357 research outputs found

    A model based on clinical parameters to identify myocardial late gadolinium enhancement by magnetic resonance in patients with aortic stenosis: An observational study

    Get PDF
    Objective With increasing age, the prevalence of aortic stenosis grows exponentially, increasing left heart pressures and potentially leading to myocardial hypertrophy, myocardial fibrosis and adverse outcomes. To identify patients who are at greatest risk, an outpatient model for risk stratification would be of value to better direct patient imaging, frequency of monitoring and expeditious management of aortic stenosis with possible earlier surgical intervention. In this study, a relatively simple model is proposed to identify myocardial fibrosis in patients with a diagnosis of moderate or severe aortic stenosis. Design Patients with moderate to severe aortic stenosis were enrolled into the study; patient characteristics, blood work, medications as well as transthoracic echocardiography and cardiovascular magnetic resonance were used to determine potential identifiers of myocardial fibrosis. Setting The Royal Brompton Hospital, London, UK Participants One hundred and thirteen patients in derivation cohort and 26 patients in validation cohort. Main outcome measures Identification of myocardial fibrosis. Results Three blood biomarkers (serum platelets, serum urea, N-terminal pro-B-type natriuretic peptide) and left ventricular ejection fraction were shown to be capable of identifying myocardial fibrosis. The model was validated in a separate cohort of 26 patients. Conclusions Although further external validation of the model is necessary prior to its use in clinical practice, the proposed clinical model may direct patient care with respect to earlier magnetic resonance imagining, frequency of monitoring and may help in risk stratification for surgical intervention for myocardial fibrosis in patients with aortic stenosis

    Low prevalence of fibrosis in thalassemia major assessed by late gadolinium enhancement cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heart failure remains a major cause of mortality in thalassaemia major. The possible role of cardiac fibrosis in thalassemia major in the genesis of heart failure is not clear. It is also unclear whether cardiac fibrosis might arise as a result of heart failure.</p> <p>Methods</p> <p>We studied 45 patients with thalassaemia major who had a wide range of current cardiac iron loading and included patients with prior and current heart failure. Myocardial iron was measured using T2* cardiovascular magnetic resonance (CMR), and following this, late gadolinium enhancement (LGE) was used to determine the presence of macroscopic myocardial fibrosis.</p> <p>Results</p> <p>The median myocardial T2* in all patients was 22.6 ms (range 5.3-58.8 ms). Fibrosis was detected in only one patient, whose myocardial T2* was 20.1 ms and left ventricular ejection fraction 57%. No fibrosis was identified in 5 patients with a history of heart failure with full recovery, in 3 patients with current left ventricular dysfunction undergoing treatment, or in 18 patients with myocardial iron loading with cardiacT2* < 20 ms at the time of scan.</p> <p>Conclusion</p> <p>This study shows that macroscopic myocardial fibrosis is uncommon in thalassemia major across a broad spectrum of myocardial iron loading. Importantly, there was no macroscopic fibrosis in patients with current or prior heart failure, or in patients with myocardial iron loading without heart failure. Therefore if myocardial fibrosis indeed contributes to myocardial dysfunction in thalassemia, our data combined with the knowledge that the myocardial dysfunction of iron overload can be reversed, indicates that any such fibrosis would need to be both microscopic and reversible.</p

    Cardiovascular magnetic resonance myocardial perfusion: methods and applications in patients with coronary artery disease

    Get PDF
    Perfusion CMR is an attractive imaging modality that is becoming comparable with other clinically diagnostic tests. SPECT and PET are well clinically validated and have good accuracy for detection of significant CAD. However, these techniques have a rather low spatial resolution and are not suitable for the detection of subendocardial perfusion defect. In addition, the radiation burden, the potential for attenuation artefacts (SPECT) and the limited availability (PET) are limitations of these imaging techniques. An integrated assessment of myocardial perfusion, function and viability is feasible with CMR. In addition, compared to other clinically available imaging techniques, CMR perfusion has excellent spatial resolution and no ionising radiation exposure. However, it is not widely available and there is a need of protocol and pulse sequence standardization. Most perfusion analysis remains observer-dependent (“eyeball” analysis) or dependent on bolus dispersion (semi-quantitative analysis). Fully quantitative analysis using CMR perfusion is currently time-consuming for clinical application. Perfusion CMR is an evolving field with numerous future directions

    Cardiovascular Magnetic Resonance and prognosis in cardiac amyloidosis

    Get PDF
    Background: Cardiac involvement is common in amyloidosis and associated with a variably adverse outcome. We have previously shown that cardiovascular magnetic resonance (CMR) can assess deposition of amyloid protein in the myocardial interstitium. In this study we assessed the prognostic value of late gadolinium enhancement (LGE) and gadolinium kinetics in cardiac amyloidosis in a prospective longitudinal study.Materials and methods: The pre-defined study end point was all-cause mortality. We prospectively followed a cohort of 29 patients with proven cardiac amyloidosis. All patients underwent biopsy, 2D-echocardiography and Doppler studies, I-123-SAP scintigraphy, serum NT pro BNP assay, and CMR with a T-1 mapping method and late gadolinium enhancement (LGE).Results: Patients with were followed for a median of 623 days (IQ range 221, 1436), during which 17 (58%) patients died. The presence of myocardial LGE by itself was not a significant predictor of mortality. However, death was predicted by gadolinium kinetics, with the 2 minute post-gadolinium intramyocardial T1 difference between subepicardium and subendocardium predicting mortality with 85% accuracy at a threshold value of 23 ms (the lower the difference the worse the prognosis). Intramyocardial T1 gradient was a better predictor of survival than FLC response to chemotherapy (Kaplan Meier analysis P = 0.049) or diastolic function (Kaplan-Meier analysis P = 0.205).Conclusion: In cardiac amyloidosis, CMR provides unique information relating to risk of mortality based on gadolinium kinetics which reflects the severity of the cardiac amyloid burden

    Anomalous Coronary Arteries: Anatomic and Functional Assessment by Coronary and Perfusion Cardiovascular Magnetic Resonance in Three Sisters

    Get PDF
    Combined coronary and perfusion cardiovascular magnetic resonance was performed in three sisters with angina and suspected anomalous coronary arteries. Two sisters had anomalous coronary arteries passing between the aorta and right ventricular outflow tract and had abnormal myocardial perfusion. One sister had normal anatomy and perfusion. The combined approach identified the anatomy and functional significance of suspected anomalous coronary arteries
    corecore