992 research outputs found

    Wake structure and kinematics in two insectivorous bats

    Get PDF
    We compare kinematics and wake structure over a range of flight speeds (4.0–8.2 m s(−1)) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis velifer. Body mass and wingspan are similar in these species, but M. velifer has broader wings and lower wing loading. By using high-speed videography and particle image velocimetry of steady flight in a wind tunnel, we show that three-dimensional kinematics and wake structure are similar in the two species at the higher speeds studied, but differ at lower speeds. At lower speeds, the two species show significant differences in mean angle of attack, body–wingtip distance and sweep angle. The distinct body vortex seen at low speed in T. brasiliensis and other bats studied to date is considerably weaker or absent in M. velifer. We suggest that this could be influenced by morphology: (i) the narrower thorax in this species probably reduces the body-induced discontinuity in circulation between the two wings and (ii) the wing loading is lower, hence the lift coefficient required for weight support is lower. As a result, in M. velifer, there may be a decreased disruption in the lift generation between the body and the wing, and the strength of the characteristic root vortex is greatly diminished, both suggesting increased flight efficiency. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’

    Value of black blood T2* cardiovascular magnetic resonance

    Get PDF
    Purpose To assess whether black blood T2* cardiovascular magnetic resonance is superior to conventional white blood imaging of cardiac iron in patients with thalassaemia major (TM). Materials and methods We performed both conventional white blood and black blood T2* CMR sequences in 100 TM patients to determine intra and inter-observer variability and presence of artefacts. In 23 patients, 2 separate studies of both techniques were performed to assess interstudy reproducibility. Results Cardiac T2* values ranged from 4.5 to 43.8 ms. The mean T2* values were not different between black blood and white blood acquisitions (20.5 vs 21.6 ms, p = 0.26). Compared with the conventional white blood diastolic acquisition, the coefficient of variance of the black blood CMR technique was superior for intra-observer reproducibility (1.47% vs 4.23%, p < 0.001), inter-observer reproducibility (2.54% vs 4.50%, p < 0.001) and inter-study reproducibility (4.07% vs 8.42%, p = 0.001). Assessment of artefacts showed a superior score for black blood vs white blood scans (4.57 vs 4.25; p < 0.001). Conclusions Black blood T2* CMR has superior reproducibility and reduced imaging artefacts for the assessment of cardiac iron, in comparison with the conventional white blood technique, which make it the preferred technique for clinical practice

    Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies

    Full text link
    We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs' nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs' nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs' nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.Comment: 56 pages, 9 figures, accepted for publication in ApJ (20 January 2006, vol 637 issue

    Ice emission and the redshifts of submillimeter sources

    Full text link
    Observations at submillimeter wavelengths have revealed a population of sources thought to be at relatively large redshifts. The position of the 850 μ\mum passband on the Rayleigh-Jeans portion of the Planck function leads to a maximum redshift estimate of zz\sim4.5 since sources will not retain their redshift independent brightness close to the peak of the Planck function and thus drop out of surveys. Here we review evidence that ice absorption is present in the spectra of local ultraluminous infrared galaxies which are often taken as analogs for the 850 μ\mum source population. We consider the implication of this absorption for ice induced spectral structure at far infrared wavelengths and present marginal astronomical evidence that amorphous ice may have a feature similar to crystalline ice near 150 μ\mum. Recent corroborative laboratory evidence is supportive of this conclusion. It is argued that early metal enrichment by pair instability SN may lead to a high ice content relative to refractory dust at high redshift and a fairly robust detection of ice emission in a z=6.42z=6.42 quasar is presented. It is further shown that ice emission is needed to understand the 450 μ\mum sources observed in the GOODS-N field. We are thus encouraged to apply far infrared ice emission models to the available observations of HDF 850.1, the brightest submillimeter source in the {\it Hubble Deep Field}. We suggest that a redshift as large as 13 may need to be considered for this source, nearly a factor of three above the usual top estimate. Inclusion of the possibility of far infrared ice emission in the spectral energy distributions of model sources generally broadens the range of redshifts to be considered for submillimeter sources compared to models without ice emission.Comment: 37 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Effects of combined deferiprone with deferoxamine on right ventricular function in thalassaemia major

    Get PDF
    BACKGROUND: Combination therapy with deferoxamine and oral deferiprone is superior to deferoxamine alone in removing cardiac iron and improving left ventricular ejection fraction (LVEF). The right ventricle (RV) is also affected by the toxic effects of iron and may cause additional cardiovascular perturbation. We assessed the effects of combination therapy on the RV in thalassaemia major (TM) using cardiovascular magnetic resonance (CMR). METHODS: We retrieved imaging data from 2 treatment trials and re-analyzed the data for the RV responses: Trial 1 was a randomized controlled trial (RCT) of 65 TM patients with mild-moderate cardiac siderosis receiving combination therapy or deferoxamine with placebo; Trial 2 was an open label longitudinal trial assessing combination therapy in 15 TM patients with severe iron loading. RESULTS: In the RCT, combination therapy with deferoxamine and deferiprone was superior to deferoxamine alone for improving RVEF (3.6 vs 0.7%, p = 0.02). The increase in RVEF was greater with lower baseline T2* 8-12 ms (4.7 vs 0.5%, p = 0.01) than with T2* 12-20 ms (2.2 vs 0.8%, p = 0.47). In patients with severe cardiac siderosis, substantial improvement in RVEF was seen with open-label combination therapy (10.5% ± 5.6%, p < 0.01). CONCLUSIONS: In the RCT of mild to moderate cardiac iron loading, combination treatment improved RV function significantly more than deferoxamine alone. Combination treatment also improved RV function in severe cardiac siderosis. Therefore adding deferiprone to deferoxamine has beneficial effects on both RV and LV function in TM patients with cardiac siderosis

    Combined chelation therapy in thalassemia major for the treatment of severe myocardial siderosis with left ventricular dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In thalassemia major (TM), severe cardiac siderosis can be treated by continuous parenteral deferoxamine, but poor compliance, complications and deaths occur. Combined chelation therapy with deferiprone and deferoxamine is effective for moderate myocardial siderosis, but has not been prospectively examined in severe myocardial siderosis.</p> <p>Methods</p> <p>T2* cardiovascular magnetic resonance (CMR) was performed in 167 TM patients receiving standard subcutaneous deferoxamine monotherapy, and 22 had severe myocardial siderosis (T2* < 8 ms) with impaired left ventricular (LV) function. Fifteen of these patients received combination therapy with subcutaneous deferoxamine and oral deferiprone with CMR follow-up.</p> <p>Results</p> <p>At baseline, deferoxamine was prescribed at 38 ± 10.2 mg/kg for 5.3 days/week, and deferiprone at 73.9 ± 4.0 mg/kg/day. All patients continued both deferiprone and deferoxamine for 12 months. There were no deaths or new cardiovascular complications. The myocardial T2* improved (5.7 ± 0.98 ms to 7.9 ± 2.47 ms; p = 0.010), with concomitant improvement in LV ejection fraction (51.2 ± 10.9% to 65.6 ± 6.7%; p < 0.001). Serum ferritin improved from 2057 (CV 7.6%) to 666 (CV 13.2%) μg/L (p < 0.001), and liver iron improved (liver T2*: 3.7 ± 2.9 ms to 10.8 ± 7.3 ms; p = 0.006).</p> <p>Conclusion</p> <p>In patients with severe myocardial siderosis and impaired LV function, combined chelation therapy with subcutaneous deferoxamine and oral deferiprone reduces myocardial iron and improves cardiac function. This treatment is considerably less onerous for the patient than conventional high dose continuous subcutaneous or intravenous deferoxamine monotherapy, and may be considered as an alternative. Very prolonged tailored treatment with iron chelation is necessary to clear myocardial iron, and alterations in chelation must be guided by repeated myocardial T2* scans.</p> <p>Trial registration</p> <p>This trial is registered as NCT00103753</p
    corecore