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ABSTRACT 

We compare kinematics and wake structure over a range of flight speeds (4.0-8.2 ms-

1) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis 

velifer. Body mass and wingspan are similar in these species, but M. velifer has 

broader wings and lower wing loading. By using high speed videography and particle 

image velocimetry of steady flight in a wind tunnel, we show that 3D kinematics and 

wake structure are similar in the two species at the higher speeds studied, but differ at 

lower speeds. At lower speeds, the two species show significant differences in mean 

angle of attack, body-wingtip distance and sweep angle. The distinct body vortex seen 

at low speed in T. brasiliensis and other bats studied to date is considerably weaker or 

absent in M. velifer. We suggest that this could be influenced by morphology: 1) the 

narrower thorax in this species likely reduces the body-induced discontinuity in 

circulation between the two wings; and 2) the wing loading is lower, hence the lift 

coefficient required for weight support is lower. As a result, in M. velifer, there may 

be a decreased disruption in the lift generation between the body and the wing and the 

strength of the characteristic root vortex is greatly diminished, both suggesting 

increased flight efficiency. 
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INTRODUCTION 

To fly, animals face a host of physical and biological challenges. The rich diversity of 

extant flapping flyers encompasses many variations on basic themes, whether one 

considers aerodynamic force production, control of trajectories in three-dimensional 

aerial environments, or how flight is employed to obtain food, escape predation or 

injury, and to reproduce. As the comparative biology of animal flight continues to 

mature, it has been possible to discern important commonalities in how flying animals 

interact with the physical world. For example, insects, bats, and birds cruise at similar 

Strouhal numbers (St=frequency×amplitude/speed; predictor of the unsteadiness of 

the flow over the wing) [1]; passive rotational damping plays a key role in turning 

dynamics for all flying animals studied to date [2]; and for some modes of flight, high 

lift is generated by a stable leading edge vortex in multiple kinds of animals [3-7]. 

Within these basic similarities, however, distinct differences occur among flying 

animals at many levels of organization. Body size profoundly influences multiple 

aspects of flight, from fluid dynamics to muscle physiology to wing loading. Hence 

flight is experienced quite differently by insects with wings less than one mm in 

length (e.g. [8]) compared to large migratory birds or raptors (e.g. [9, 10]). Because 

the four known evolutionary origins of flight are phylogenetically distant, the basic 

anatomy and material composition of the flight apparatus are fundamentally different 

in insects, pterosaurs, birds, and bats. Major differences in the mechanical properties 

of wing tissues can be observed among groups of flying animals (see, for example, 

[11-15]), and these have significant consequences for flight function. Details of 

patterns of wing motion, too, differ between insects, birds, and bats. At a finer 

taxonomic scale, within each of the major lineages of flying animals, wingbeat 

kinematics can vary substantially among species (e.g.[16-18]). Similarly, some 

aspects of wake architecture may be characteristic of insects, birds, or bats (see [7]), 

but there is variation within each group that appears to be associated with kinematics, 

wing morphology or both (insects: hawkmoths[19]vs locusts[19, 20]; birds: 

blackcaps[21] vs. swifts[22]; bats: Pallas’ long-tonged bats[23] vs Brazilian free-

tailed bats [24]). 



	   3	  

Morphology, kinematics and flight performance are interrelated, and may be 

associated with diverse aspects of a given species’ ecology [25]. However, although 

correlations between wing geometry and ecology have been sought for several 

decades (e.g. [25-29], the power of detailed fluid dynamics analysis to improve 

understanding of functional differences between species whose flight apparatus shares 

many similarities has yet to be fully realized (but see [20, 30]). 

The choice of study species that exemplify particular traits, from lineages of known 

phylogenetic relatedness, can provide new insight into associations among wing 

structure, aerodynamics, and flight capabilities. To date, all but one of the bat species 

whose wakes have been studied in detail have been similar in feeding ecology (fruit- 

and nectar-feeding) and were drawn from two rather distantly related families, the 

Pteropodidae and Phyllostomidae [23, 31-34]. Species of these two families generally 

have short wings and relatively high wing loading [25, 35] and have similar wake 

structure over the wingbeat cycle. In contrast, the molossid Tadarida brasiliensis, the 

Brazilian free-tailed bat, differs from frugivores and nectarivores in flight ecology, 

wing kinematics, morphology, and wake dynamics [24, 25]. This aerial hunter 

resembles the common swift (Apus apus) in wing form and wake architecture [24, 

36]. This suggests that in both birds and bats, ecology, flight performance, 

morphology and aerodynamics can show common patterns of interrelationship, 

despite fundamental differences in the structure of the flight apparatus in these 

distantly related flying vertebrates [24].  

Here we explore whether there are differences in kinematics and wake structure 

between two bat species whose ecology is broadly similar but differs in notable ways 

on a finer scale. For this comparison, we chose species from distantly related families: 

Myotis velifer (Vespertilionidae) and Tadarida brasiliensis (Molossidae), who last 

shared a common ancestor more than 50 million years ago [37]. The two species often 

share roost sites, are comparable in weight and wingspan and are aerial insectivores, 

catching their prey on the wing.  

T. brasiliensis is known for its migration and ability to commute long distances for 

feeding [38-40]. It forages in open spaces high above the ground with fast straight 

flight [41, 42]. Bats of this species possess relatively high wing loading and aspect 

ratio, as well as pointed wing tips, and it has been proposed that these traits could be 
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associated with great agility (rate at which turns can be initiated) and high efficiency 

when flying at higher speeds [25, 43, 44]. However, this wing shape requires higher 

flight speeds to generate sufficient lift to support body weight, suggesting they may 

also possess lower maneuverability (turning radius at given speed) and poorer 

performance at lower speeds [25]. In contrast, M. velifer does not migrate, and instead 

hibernates in winter. This species hunts closer to the ground, where it likely 

encounters more obstacles, such as vegetation and rock formations [45]. It has been 

reported that the flight of M. velifer is more direct, with less flutter, than that of other 

species of the genus [39], but not as straight as T. brasiliensis. M. velifer shows a 

slightly higher aspect ratio than average, though still lower than T. brasiliensis[46]. 

M. velifer’s low wing loading, relatively long wings and round wing tips are 

hypothesized to be associated with slow, economic and maneuverable flight [25, 43, 

47].  

In this study we compare the kinematics and wake architecture of M. velifer and T. 

brasiliensis, and hypothesise that these will reflect differences in wing shape and 

ecology of these two species. We also explored flight speed-dependence of the 

differences between the species. Due to their ecology, we expected that the migratory 

T. brasiliensis might be more tuned towards fast flight, while M. velifer would favour 

slightly lower speeds. We discuss our findings in the context of similar studies on bats 

with different ecology and morphology (fruit- and nectar-feeding) and birds with 

similar aerial foraging strategies.  

MATERIALS	  AND	  METHODS	  

We used particle image velocimetry (PIV) and high speed videography to investigate 

the wake structure of two bat species, M. velifer and T. brasiliensis. Wake structure 

and kinematics for T. brasiliensis have previously been published [24]. 

Bats	  

We compared wake structure in M. velifer (three female and one male) to that of T. 

brasiliensis (two females and three males). All bats were wild-caught at the same 

cave in Texas in April 2009. 
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Morphological descriptors of each individual were extracted from high speed video of 

flights at low speed (all trials < 5.5 ms-1) using the direct linear transformation (DLT) 

method[48] for 3D reconstruction. 

We selected the point of the wingbeat cycle at which wing extension was greatest, 

typically close to the middle of the downstroke. Half wingspan (b) was defined as the 

maximum distance between the point midway between the scapulae and the wingtip 

at mid-downstroke, and wing chord (c) as the maximum distance between wrist and 

the tip of the fifth digit (Fig. 1). Wing area (S) was the area enclosed by markers at 

the midline point between the scapulae, wrist, wingtip, tip of the digit V, and foot. To 

assess the effect of estimating area by five points instead of the wing outline, we 

compared area estimated by these two alternatives from dorsal views of low speed 

flights (one per bat, Fig. 2). Images were selected at maximum wing extension during 

the downstroke and processed using Adobe Illustrator (Adobe, San Jose, CA). Wing 

area estimated from a full outline was 1.4% smaller compared to the five point-

estimate for T. brasiliensis and 0.7% for M. velifer. We deemed this difference 

insubstantial relative to the additional data processing required to compute wing area 

by the full outline method. 

We computed aspect ratio (AR) as 2*(b2/S), and wing loading (Q) as 0.5*mg/S. Tail 

area and width of the trunk were extracted from the dorsal view of one trial per 

individual at low speed (Fig. 2). We calculated means and standard deviations for 

each bat for chord, half wingspan, body mass, wing area, aspect ratio, and wing 

loading from all complete wingbeat cycles in trials at speeds between 4.0 ms-1 and 5.5 

ms-1 (Table 1). Values for morphological parameters such as wingspan and chord 

measured in this manner in flight can differ from those measured on bats placed in a 

maximally flattened posture with wing joints maximally extended, but are more 

directly relevant for specific flight conditions under study [49].  

Experimental	  setup	  

Bats were trained to fly over a range of speeds (4.0-8.2 ms-1) in the wind tunnel at 

Brown University (test section 0.60 by 0.82 by 3.8 m height x width x length)[24]. 

Synchronized PIV and high speed video recordings were carried out for all study 

subjects. The illumination plane of the PIV laser (Litron LPY 703-200, 200 Hz) was 

oriented perpendicular to the free stream and particles of DEHS (di-ethyl-hexyl-

sebacate) were used for seeding. Two PIV cameras (Photron 1024 PCI, 1024 x1024 
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pixel, lens 85 mm, f/1.4) were positioned downstream from the bats in the test 

section, stacked vertically to capture slightly overlapping images, yielding a 

composite image with final size of 0.25 m x 0.45 m (width x height). Kinematics were 

recorded by three high-speed video cameras (Photron 1024 PCI, 200Hz, shutter speed 

1/1000 s) positioned outside the wind tunnel. 3-D kinematics were reconstructed from 

five anatomical markers: dorsal midline (between scapulae), wrist, tip of 3rd and 5th 

digits, and foot (Fig. 1a), using the DLT method. PIV and kinematics were sampled at 

200 Hz, producing approximately 25-40 recordings per wingbeat.  

 

Although stationary feeders can be used to train nectar-feeding bats to fly at a given 

position in a wind tunnel, this approach is not appropriate to insectivorous bats. 

Instead, the bats flew upstream through the test section somewhat faster than the free 

stream velocity, although far more slowly than in the presence of no wind. They 

subsequently landed on a mesh screen after they passed through the measurement 

volume. The bat was released in front of the PIV cameras and recording was triggered 

manually after the bat passed the position of the laser sheet. Net or total flight speed 

(Ut) was the sum of wind tunnel and forward flight speeds. The synchronization 

between kinematic and PIV measurements required correction of the “Doppler shift” 

in the time-resolved PIV fields due to the additional speed of the bats flying towards 

the front of the wind tunnel [32]. 

 

Trials were saved for analysis only when the bat flew straight and level in the middle 

of the wind tunnel test section, and within the limited observation area of the PIV 

system. Approximately one in five trials were usable. Bats flew up to 15 times in one 

session, and individuals rested at least one day between sessions. Flights were 

rewarded with a mealworm. The bat’s weight was measured before the first flight and 

adjusted by the weight of the mealworms consumed over the course of the 

experiment. We collected an average of 20 usable trials per individual for T. 

brasiliensis and about 9 usable trials per individual for M. velifer. Both species flew 

over range of speeds with M. velifer covering speeds between 3.8 and 8.2 ms-1 and T. 

brasiliensis covering speeds between 4.0 and 9.3 ms-1. We only compared 

overlapping speeds from 4.0 ms-1 to 8.2 ms-1, removing one trial below 4.0 ms-1 from 

M. velifer and 10 trials above 8.2 ms-1 from the original T. brasiliensis dataset [24].  
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PIV analysis software, DaVis v. 7.2 (LaVision Inc., Ypsilanti, MI, USA) was used to 

generate the velocity vector fields by applying sequential cross-correlation with multi-

pass iterations in decreasing size (128x128 pixel, 2 iterations to 64x64 pixel, 2 

iterations, 50% overlap). Vectors with a peak ratio Q of < 1.2 and an average 

neighbourhood variation of >1.5 × rms were replaced by post-processing interpolation 

and the application of a simple 3 × 3 smoothing filter. Vector fields were then 

exported and further processing was conducted in MATLAB (Mathworks Inc., 

Natick, MA, USA).  

 

Vorticity and swirl were computed to visualize wake structures [24, 33, 50]. Vector 

fields and vorticity were displayed using a +5 s-1 vorticity threshold (<5% of 

maximum vorticity value in trial) to reduce noise. Swirl is closely related to velocity, 

but distinguishes between shear and rotation [50 ]. By using positive swirl values, 

thus only displaying rotational information, noise is greatly reduced in the isosurface 

reconstructions. Vorticity was smoothed using a 3 × 3 smoothing filter, swirl was 

calculated, and a threshold of 25 (<1% of maximum swirl value in trial) was applied 

to eliminate remaining noise. The rotational direction and circulation was determined 

from vorticity.  

 

Four vortices have been identified in the typical wake of bats [33, 51]: a wingtip 

vortex, a wing root vortex and a distal wing vortex pair. The circulation for each 

vortex, over the course of the wingbeat cycle, was calculated by identifying the vortex 

location manually and integrating vorticity over the surrounding adjacent area after 

applying a 5 s-1 threshold. 

 

Results are presented in a body-centred coordinate system, or a combination of 

global- and body-centred systems. Both reference frames are based on right-handed 

coordinate systems with positive x in wind direction, positive z in vertical or upward 

direction, and positive y in the direction of the right wingtip from the centre of the 

bat’s body. The origin of the bat-centred system is the mid-body marker, and the 

global coordinate system originates at the position of the laser light sheet. 
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Kinematics were analysed by interpolating information to 40 time points per wingbeat 

cycle, starting at the upper reversal point of the wingtip. Two surface planes were 

defined to characterize 3D wing orientation (Fig. 1a): the armwing, defined by wrist, 

sternum and 5th digit, and handwing, defined by wrist, digit V and wing tip. The 

following parameters were calculated (Fig. 1):  

Flapping frequency, f, wingbeats per second 

Downstroke ratio, τ , downstroke period/total wingbeat period, defined by vertical 

wingtip motion 

Wing stroke amplitude, Θ  tip,	  maximum angle of excursion of shoulder to wingtip 

over the wingbeat cycle 

Span ratio, SR, ratio of upstroke to downstroke wingspan when the wing passed 

through the horizontal plane (Fig. 1b)  

Stroke plane angle,	  β , angle between a line connecting the wingtip at the upper and 

lower reversal point in the side view (xz plane) relative to the horizontal 

Angle of attack, α , the angle between the armwing surface and the effective air 

velocity, the vector sum of net bat speed (Ut), and wing velocity (Fig.1c) (αmd is 

at mid-downstroke and αmean is the average α  over the wingbeat cycle) 

Wrist sweep angle, φ , rotation of the handwing relative to the armwing, along the axis 

defined by wrist and the fifth digit (decrease in φ  is a backwards sweeping 

motion) 

Wrist flexion angle, θ , rotation of the handwing in the axis perpendicular to the 

armwing (angle above 180° corresponds to downward flexion) 

Analysis	  

We analysed no more than three wing beat cycles per trial, for a total of 215 wing 

beat cycles (99 trials) for T. brasiliensis and 70 wing beat cycles (35 trials) for M. 

velifer. A significance level of 5% was used for all tests, which were performed using 

SPSS 17.0 (SPSS Inc., Chicago, IL, USA). 

 

Bats flew at a range of speeds not strictly defined by wind tunnel airspeed due to their 

movement upstream. We first explored the relationship between flight parameters and 

speed for each species separately, treating speed as a continuous variable (Suppl. 

Table 1, [24]). We employed a mixed-effect model with reduced maximum likelihood 
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estimates of the variance (REML). Wingbeat cycle was treated as a repeated measure 

and individual as a random effect. To counteract the problem of multiple 

comparisons, p-values were corrected using the sequential Holm-Bonferroni method 

(p’-values). We then explored the data further by comparing species, as well as 

allowing for polynomial functions of second and third order in case of a non-linear 

relationship between parameter and speed [52]. Best fit was determined based on log-

likelihood ratio (-2LL) (Fig. 3). 

 

To visualize differences in dynamics and kinematics in relation to speed and to 

facilitate comparison between the two species (Table 2), we grouped trials into three 

net flight speed categories: low, 4.0 to 5.5 ms-1; medium, 5.5 ms-1 to 7 ms-1 and high, 

7 ms-1 to 8.2 ms-1. Because M. velifer and T. brasiliensis differ little in body mass, we 

did not normalize the data by flight speed or wing chord. Wing chord-normalised 

kinematics are presented in supplementary material (Suppl. Fig. 1). A mixed-effect 

model with individual as random effect, wingbeat cycle as repeated measure, species 

as fixed effect, and Holm-Bonferroni correction, was used to compare kinematic 

parameters among the speed groups. To compare wing trajectories and circulation 

among groups graphically, we first computed averages of the respective variables for 

all wingbeat cycles within a trial, then averaged all trials for each bat before 

computing averages for all bats (see Fig. 4,6). Standard errors are calculated over 

individuals. 

RESULTS 

Kinematics 
Those flight parameters that change significantly with flight speed change less in M. 

velifer than T. brasiliensis (Fig. 3). In addition, the two species differ substantially 

more in their kinematics at low speed (Fig. 3).  

 

Although variation in flight parameters with flight speed is subtle, several parameters 

change significantly in M. velifer (Suppl. Table 1, speed treated as continuous 

variable). Maximum half wingspan (p’=0.020), minimum body-wingtip distance 

(p’=0.040), and mean angle of attack (p’=0.027) decrease with increasing flight 
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speed, while wingbeat amplitude increases (p’<0.001). Frequency (p’=0.098), span 

ratio (p’=0.895), downstroke angle of attack (p’=1.000), sweep (p’=1.000) and 

flexion (p’=1.000) angles, downstroke ratio (p’=0.895), stroke plane angle 

(p’=0.678), wing chord (p’=1.000) do not change significantly with flight speed. In 

contrast, in T. brasiliensis, all kinematic parameters except stroke plane angle 

(p’=0.956) and maximum wing chord (p’=0.956) change significantly with speed. 

Frequency (p’=0.001), downstroke ratio (p’=0.004), span ratio (p’=0.004), maximum 

span (p’=0.005), minimum body-wingtip distance (p’=0.005), downstroke angle of 

attack (p’=0.005), mean angle of attack (p’=0.005), sweep angle (p’=0.005) and 

flexion angle (p’=0.005) all decreased, while wingbeat amplitude (p’=0.002) was the 

only parameter that increased significantly (Suppl. Table 1, [24]).  

Closer examination of the differences between flight speeds as well as between 

species were achieved separating kinematics into three flight speed categories. Wing 

position trajectories confirm that the large-scale spatial geometry of wingbeat 

kinematics changes little with speed at the velocities we assessed in M. velifer (Fig. 

4a-f,g,i,k, Suppl. Table 1, Table 2). We observed a small shift in absolute position of 

wingtip and wrist as observed from above, but no accompanying change in pattern of 

motion (Fig. 4c,f). Differences between speeds are more pronounced in T. 

brasiliensis, apparent in the much more extended wing during the upstroke at low 

speeds (Fig. 4a,d,h,j). M. velifer shows less speed-dependent variation in trajectory of 

the wrist and digits, wing flexion, sweep angle, and angle of attack than T. 

brasiliensis (Fig. 4). Stroke plane is almost vertical in both M. velifer and T. 

brasiliensis, and does not change significantly with speed in either species (see above 

and Suppl. Table 1), nor does this angle differ significantly between the two species 

(p=0.102, Fig. 3h; also see Fig. 4b,e; Table 2).  

 

In all, kinematics in M. velifer and T. brasiliensis are very similar. When specific 

kinematic parameters are compared within each speed class, using the mixed effect 

model with Bonferroni correction (Table 2), no significant difference remains at 

medium speed and only the angle of attack at mid-downstroke (αmd, p’<0.001) and 

mean angle of attack (αmean, p’<0.001) differ significantly at high speeds. The main 

difference between the two species occurs at low speeds, with significant differences 

in mean angle of attack (αmean, p’=0.04), body-wingtip distance (p’<0.001) and sweep 
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angle (p’=0.018), which are greater in T. brasiliensis than M. velifer. 

Wake structure 

The wakes of M. velifer, visualized from the 2D velocity fields and their subsequent 

3D reconstructions, were characterized by the vortex structures typically observed in 

the wakes of flying bats: a tip vortex (V1), a near-body or root vortex (V2), and a 

distal vortex pair (V3, V4) observed at the end of the upstroke [23, 24, 32-34, 51, 53] 

(Fig. 5, Suppl. Fig. 2). Wake patterns of individual wing beat cycles showed 

considerable variation, even at similar speeds, but a general pattern can be discerned 

within the variation. At low speeds, the wingtip vortex was usually present throughout 

the wingbeat cycle. At moderate and higher speeds, the tip vortex was often greatly 

diminished during the upstroke, sometimes to a degree that it was no longer 

detectable, suggesting that part of the upstroke is aerodynamically passive. The root 

vortex, shed from wing root at the base of the wing at the body wall, and a distal 

vortex pair (also known as a “reverse vortex loop”) were detected in some of the trials 

at all speeds, but frequently fell below the detection threshold of vorticity and swirl. 

Their occurrence and strength (circulation) diminished as speed increased. Based on 

the vorticity field, we determined occurrence (O, reported as percentage of all trials 

within speed group) for the root vortex and distal vortex pair in the three speed 

categories for both M. velifer and T. brasiliensis (Table 3). Vortex structure varied 

with speed in both M. velifer and T. brasiliensis (Fig. 5, Fig. 6). The wakes of M. 

velifer and T. brasiliensis are similar at high speed, where both species are 

characterized by wakes dominated by a tip vortex that has notable circulation 

primarily during the downstroke and little vorticity in the upstroke. They are less 

similar at lower speeds, in which M. velifer often lacks a detectable root vortex, and in 

the 50% of trials in which it is visible, it is always considerably weaker than in T. 

brasiliensis (Fig. 6). 

DISCUSSION	  

Flying animals vary greatly in the architecture of the flight apparatus and their 

locomotor capabilities. Analyses of wake structure and kinematics can provide insight 

into the determinants of flight performance that can facilitate comparisons among 

diverse fliers [20, 24, 54]. Specifically, the nature of the wake vortices reveals details 
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of aerodynamic force production. Researchers have observed some structural features 

in the wakes of most bat species studied to date, particularly wingtip, wing root and 

distal paired vortices, for flight behaviour from hovering to moderately high speeds.  

 

Strong tip vortices are universally present throughout bat downstrokes, confirming 

their dominant role as a signature of lift generation [23, 24, 31, 33]. In most cases, tip 

vortices persist through the upstroke although they decline in strength, indicating that 

the upstroke as well as the downstroke is aerodynamically active [31, 33]. However, 

in T. brasiliensis, at high flight speeds, the tip vortex is greatly diminished or absent 

for a substantial part of the upstroke, indicating that it is largely aerodynamically 

passive [24].  

 

Root vortices indicate diminished lift generation over the body relative to the wings; 

in extreme cases, the body generates no lift, and each wing operates as an independent 

lifting surface [20, 33, 55, 56]. In this case, root vortices have the same strength as the 

tip vortices. The distal vortex pair indicates negative lift generation at the distal part 

of the wing by showing a reversed rotational direction relative to the tip and root 

vortex pair [51], and it arises at the end of the upstroke, when negative angles of 

attack are high at the distal part of the wing. Both T. brasiliensis and M. velifer show 

wingtip, root, and paired distal vortices to various degrees and depending on flight 

speeds. 

 

The wake structure is directly related to kinematics and morphology; kinematics 

might be a direct result of the morphology, but it is difficult to separate these factors. 

Our detailed analysis shows M. velifer and T. brasiliensis are similar in kinematics 

and wake structure at higher speeds, but show notable differences at lower speeds 

(Fig. 3,4, Table 2). Despite those differences at low speeds, the flight style of these 

insectivorous aerial hunters looks similar when compared to that of the frugivorous 

Cynopterus brachyotis [32, 33] from the family Pteropodidae (Suppl. Movie 1, 

previously compared to T. brasiliensis [24]). Both insectivores employ an almost 

vertical stroke plane over a range of flight speeds (Fig. 3, Table 2, Suppl. Table 1). 

This contrasts with the angled and speed-dependent stroke planes of diverse 

frugivorous pteropodid bats, distantly related to the focal taxa of this study, who 

diverged from other bat families more than 55 mya [37, 49]. This effect is not solely 
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phylogenetic; kinematics of phyllostomid fruit- and nectar-feeding bats Glossophaga 

soricina [57], Leptonycteris yerbabuenae [52], Carollia perspicillata and Artibeus 

jamaicensis (unpublished data) are similar to those of pteropodids [49] and not to the 

species in this study (see Suppl. Movie 1-4). In particular, they all show relatively 

tilted stroke planes, especially at low flight speeds, and substantial flexion in the 

handwing [52, 57].  

 

Previous studies suggest fruit- and nectar-feeding bats shed root vortices over a broad 

range of flight speeds [23, 33]. Both aerial hunters in this study show only very weak 

or non-detectable root vortices at high flight speeds. Moreover, while T. brasiliensis 

generates strong root vortices at low speed, M. velifer shows little or no vorticity at 

the wing root at low speed (Table 3, Fig. 5,6). Weak root vortices over a range of 

speeds, as shown by M. velifer, have previously been observed in the pied flycatchers 

(Ficedula hypoleuca) and the blackcaps (Sylvia atricapilla) [4, 21]. 

 

An ideal wing has an elliptical circulation distribution and generates a uniform 

downwash [58, 59]. Span efficiency, a measure of deviation from this ideal, has 

recently been used to quantify differences in flight performance between species [4, 

20, 54]. The instrumentation configuration employed in these experiments (varying 

distance between the animal and the PIV plane, and the relatively small half-span 

measurement volume) does not allow sufficiently high resolution quantification of 

span efficiency. Deformation of the wake and the large variation of the wingspan 

during the stroke cycle can introduce errors in the determination of both lift and span 

efficiency [19, 20]. However, although quantitative assessment of aerodynamic 

efficiency was not feasible, qualitative assessment, using the wake structure, was 

possible. Root vortices have been observed in diverse taxa [21, 24, 31-33, 36, 56, 60, 

61]; they indicate that the circulation over the body is less than over the wings, and 

have been linked to either a broad body disrupting the downwash profile [56] or the 

petiolation of the wing [61]. While span efficiency is not a direct measure of flight 

efficiency, because it neglects analysis of parasite and profile drag, it has been shown 

to be a good indicator of flight cost [20]. Lower span efficiency (due to lower body 

lift) is understood to result in a lower lift-to-drag ratio and therefore higher 

mechanical cost of transport [54]. Span efficiency estimates are less compelling as 
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performance metrics for bodies with very unfavourable lift-to-drag ratios, especially 

at higher speeds, at which parasite and profile drag increase. 

 

The lack of root vortices at higher speeds in M. velifer and T. brasiliensis suggests 

efficient flight in both species and corresponds to the predicted low cost of transport 

in the migratory T. brasiliensis at its ranging speeds. M. velifer is similar, however, to 

T. brasiliensis in this respect, despite its different flight ecology, which, based on 

current records, does not include extensive commuting flight. We suggest that 

comparisons of flight efficiency at the upper extreme of free-flight speed ranges, 

exceeding the speeds measured in this study, might be particularly informative.  

 

Strong root vortices appear in T. brasiliensis at lower speeds, at which M. velifer 

shows much weaker (lower circulation) and less frequent root vortices. This contrast 

in wake architecture between the two insectivorous bats suggests a larger difference 

between body and wing circulation for T. brasiliensis than M. velifer. This difference 

might arise from any of a number of mechanisms, including differences in lift 

generation by the body and/or tail surfaces, differences in body width, or differences 

in wing loading. Each of these is considered in the following discussion. 

 

Tails play a significant role in lift generation in birds, especially at lower speeds, 

evidenced by the generation of a distinct tail vortex pair [4, 36]. However, unlike that 

of birds, the bat tail is connected to the wings via the legs and therefore does not have 

the potential to be an independent control and lifting surface. Bat species studied to 

date have little or no tail membrane and bat wakes show no evidence of significant 

aerodynamic function for the tail [23, 33, 51]. However, both M. velifer and T. 

brasiliensis possess substantial tail membranes, and, in common with many 

insectivorous bats, use tail membranes to capture prey. The ratio of tail to wing area is 

similar in the two species, (T. brasiliensis: 7.3 ± 0.9%; M. velifer: 6.6 ± 0.6%), and 

neither showed evidence of tail vortices at any speed. However, we cannot 

unequivocally exclude that interspecific differences in tail membrane morphology, 

such as aspect ratio, could influence the wake structure near the body. 

 

Both species show a low angle of body and tail (see Suppl. Movie 1) at all flight 

speeds, an observation confirmed when using the foot-body angle as approximation 
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(Fig. 4a-f). Although this approximation has to be treated with some caution, average 

foot-body angle over the wingbeat cycle suggests a slightly steeper angle for M. 

velifer (T. brasiliensis: 3.2 ± 5.3°; M. velifer: 9.0 ± 5.1°) which would be better for lift 

generation, and would thus result in weaker root vortices at low speed than observed 

in T. brasiliensis. A second potential explanation for the differences in root vortex 

structure could be that the body of T. brasiliensis is wider than that of M. velifer, 

which may result in a bigger disruption between the wings (body width 13.8 ± 0.77% 

of mid-downstroke wingspan in T. brasiliensis, N = 5; 9.5 ± 0.9% in M. velifer, N = 

4) (Fig. 2). Lastly, differences in wing loading could contribute to the differences in 

the root vortex strength at low speed. It has been estimated that wing loading, Q, is 

almost twice as high for T. brasiliensis as M. velifer [25]. This parameter can, 

however, vary substantially depending on the measurement method and current body 

weight, which fluctuates with many factors. Using the maximum wing area measured 

in-flight (not including body and tail), our measurements suggest approximately 20% 

lower wing loading in M. velifer than T. brasiliensis (11.1 ± 2.1 vs 14.4 ± 2.5 N/m2), 

primarily due to lower body mass, coupled with larger wing chord (Table 1). 

Although the wing circulation, Γ , for both species is comparable (Γ  ∝  Q c), the 

coefficient of lift, CL, which scales with wing loading at a given speed, is significantly 

lower in M. velifer. This reasoning suggests that the induced drag coefficient, CDi, 

which correlates with the strength of the tip and root vortices, is sharply reduced in M. 

velifer (CDi ∝  CL
2/AR). This argument is further supported by the observation that T. 

brasiliensis generally shows higher angles of attack than M. velifer, consistent with 

the generation of a lower coefficient of lift. 

 

Comparing M. velifer and T. brasiliensis with two aerial hunting birds (the pied 

flycatcher [4] and the swift [36]) shows a similar relationship between the bat and 

bird pairs. Both birds are aerial hunters, but like M. velifer, the pied flycatcher hunts 

closer to the ground [62] and has a lower aspect ratio and lower wing loading than the 

swift [4, 36]. Like M. velifer, the pied flycatcher shows rather weak root vortices at 

both lower and higher speeds (3 ms-1 and 7 ms-1), while swifts have strong root 

vortices at speeds between 5.7-9.9 ms-1. Assuming a correlation between wing 

loading and root vortices, one might speculate that in swifts, root vortices are 
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preserved in at higher speeds due to considerably higher wing loading than any of the 

other species (approx. 26 Nm-1). 

 

Both insectivorous bats show wake structures that are associated with economic flight 

at higher speeds. This comes as no surprise for T. brasiliensis given their extended 

travel distances. At lower speeds, M. velifer seems to have better flight efficiency, 

indicated by the lack of root vortices, than T. brasiliensis. However, the complicated 

relationship between flight performance, morphology and kinematics makes it 

impossible to conclusively identify a deterministic role of the parameters we 

investigated, such as wing loading, aspect ratio, and body width on wake architecture.  

 

Based on the cases in which span efficiency has been used to compare flight 

performance between species [4, 20, 54], it has been proposed that birds have superior 

aerodynamic performance to that of bats [54]. This conclusion relies on the fact that 

the frugivorous bat species investigated (G. soricina and L. yerbabuenae) have lower 

lift generation associated with the body region than the birds (flycatchers and 

blackcaps), and as a result, possess relatively low span efficiency. However, the aerial 

hunting bats in the present study showed weak root vortices at high speeds, indicating 

the participation of the body in lift generation, and thus suggesting a higher span 

efficiency, perhaps comparable to the aerial-hunting birds. This wide variation in 

nature of bat wakes emphasizes the aeromechanical diversity of the order, and 

consequently, generalisations about bat aerodynamic performance should be made 

with caution. Further studies that sample a greater diversity of species are needed to 

elucidate the degree to which the morphologies, kinematics and aerodynamics of 

birds and bats result from phylogenetic constraints and/or ecological requirements.  

ACKNOWLEDGEMENTS 

We thank Daniel Riskin, Arnold Song and Rye Waldman for help with experiments, 

Barbara French and Louise Allen for expertise and help in handling bats, and Anna 

Wilson for comments on the manuscript. Special thanks to Jorn Cheney, Cosima 

Schunk and Daniel Riskin for video material. This work was supported by AFOSR 

and NSF. 



	   17	  

ETHICS	  

All	  experiments	  and	  animal	  husbandry	  complied	  with	  a	  protocol	  approved	  by	  the	  

Brown	  University	  IACUC	  and	  with	  USDA	  regulations. 

COMPETING	  INTERESTS	  	  

 We have no competing interests. 

REFERENCES: 

[1]	  Taylor,	  G.K.,	  Nudds,	  R.L.	  &	  Thomas,	  A.L.R.	  2003	  Flying	  and	  swimming	  animals	  
cruise	  at	  a	  Strouhal	  number	  tuned	  for	  high	  power	  efficiency.	  Nature	  425,	  707-‐
711.	  
[2]	  Hedrick,	  T.L.,	  Cheng,	  B.	  &	  Deng,	  X.	  2009	  Wingbeat	  Time	  and	  the	  Scaling	  of	  
Passive	  Rotational	  Damping	  in	  Flapping	  Flight.	  Science	  324,	  252-‐255.	  
[3]	  Ellington,	  C.P.,	  van	  den	  Berg,	  C.,	  Willmott,	  A.P.	  &	  Thomas,	  A.L.R.	  1996	  Leading-‐
edge	  vortices	  in	  insect	  flight.	  Nature	  384,	  626-‐630.	  
[4]	  Muijres,	  F.T.,	  Bowlin,	  M.S.,	  Johansson,	  L.C.	  &	  Hedenstrom,	  A.	  2012	  Vortex	  
wake,	  downwash	  distribution,	  aerodynamic	  performance	  and	  wingbeat	  
kinematics	  in	  slow-‐flying	  pied	  flycatchers.	  J.	  R.	  Soc.	  Interface	  9,	  292-‐303.	  
[5]	  Muijres,	  F.T.,	  Johansson,	  L.C.,	  Barfield,	  R.,	  Wolf,	  M.,	  Spedding,	  G.R.	  &	  
Hedenström,	  A.	  2008	  Leading-‐Edge	  Vortex	  Improves	  Lift	  in	  Slow-‐Flying	  Bats.	  
Science	  319,	  1250-‐1253.	  
[6]	  Warrick,	  D.R.,	  Tobalske,	  B.W.	  &	  Powers,	  D.R.	  2009	  Lift	  production	  in	  the	  
hovering	  hummingbird.	  Proceedings	  of	  the	  Royal	  Society	  B:	  Biological	  Sciences	  
276,	  3747-‐3752.	  
[7]	  Bomphrey,	  R.J.	  2012	  Advances	  in	  animal	  flight	  aerodynamics	  through	  flow	  
measurement.	  Evolutionary	  Biology	  39,	  1–11.	  
[8]	  Miller,	  L.A.	  &	  Peskin,	  C.S.	  2009	  Flexible	  clap	  and	  fling	  in	  tiny	  insect	  flight.	  J.	  
Exp.	  Biol.	  212,	  3076-‐3090.	  
[9]	  Portugal,	  S.J.,	  Hubel,	  T.Y.,	  Fritz,	  J.,	  Heese,	  S.,	  Trobe,	  D.,	  Voelkl,	  B.,	  Hailes,	  S.,	  
Wilson,	  A.M.	  &	  Usherwood,	  J.R.	  2014	  Upwash	  exploitation	  and	  downwash	  
avoidance	  by	  flap	  phasing	  in	  ibis	  formation	  flight.	  Nature	  505,	  399-‐402.	  
(doi:10.1038/nature12939).	  
[10]	  Reynolds,	  K.V.,	  Thomas,	  A.L.	  &	  Taylor,	  G.K.	  2014	  Wing	  tucks	  are	  a	  response	  
to	  atmospheric	  turbulence	  in	  the	  soaring	  flight	  of	  the	  steppe	  eagle	  Aquila	  
nipalensis.	  J.	  R.	  Soc.	  Interface	  11.	  (doi:10.1098/rsif.2014.0645).	  
[11]	  Cheney,	  J.,	  Konow,	  N.,	  Middleton,	  K.,	  Breuer,	  K.,	  Roberts,	  T.,	  Giblin,	  E.	  &	  
Swartz,	  S.	  2014	  Membrane	  muscle	  function	  in	  the	  compliant	  wings	  of	  bats.	  
Bioinsp.	  Biomim.	  9,	  025007.	  (doi:10.1088/1748-‐3182/9/2/025007).	  
[12]	  Laurent,	  C.M.,	  Palmer,	  C.,	  Boardman,	  R.P.,	  Dyke,	  G.	  &	  Cook,	  R.B.	  2014	  
Nanomechanical	  properties	  of	  bird	  feather	  rachises:	  exploring	  naturally	  
occurring	  fibre	  reinforced	  laminar	  composites.	  J.	  R.	  Soc.	  Interface	  11,	  20140961.	  



	   18	  

[13]	  Lingham-‐Soliar,	  T.	  2014	  Feather	  structure,	  biomechanics	  and	  biomimetics:	  
the	  incredible	  lightness	  of	  being.	  Journal	  of	  Ornithology	  155,	  323-‐336.	  
[14]	  Smith,	  C.,	  Herbert,	  R.,	  Wootton,	  R.	  &	  Evans,	  K.	  2000	  The	  hind	  wing	  of	  the	  
desert	  locust	  (Schistocerca	  gregaria	  Forskal).	  II.	  Mechanical	  properties	  and	  
functioning	  of	  the	  membrane.	  J.	  Exp.	  Biol.	  203,	  2933-‐2943.	  
[15]	  Vincent,	  J.F.	  &	  Wegst,	  U.G.	  2004	  Design	  and	  mechanical	  properties	  of	  insect	  
cuticle.	  Arthropod.	  Struct.	  Dev.	  33,	  187-‐199.	  
[16]	  Altshuler,	  D.L.,	  Bahlman,	  J.W.,	  Dakin,	  R.,	  Gaede,	  A.H.,	  Goller,	  B.,	  Lentink,	  D.,	  
Segre,	  P.S.	  &	  Skandalis,	  D.A.	  2015	  The	  biophysics	  of	  bird	  flight:	  functional	  
relationships	  integrate	  aerodynamics,	  morphology,	  kinematics,	  muscles,	  and	  
sensors	  1.	  Can.	  J.	  Zool.	  93,	  961-‐975.	  
[17]	  Dudley,	  R.	  2002	  The	  biomechanics	  of	  insect	  flight:	  form,	  function,	  evolution,	  
Princeton	  University	  Press.	  
[18]	  Swartz,	  S.	  &	  Konow,	  N.	  2015	  Advances	  in	  the	  study	  of	  bat	  flight:	  the	  wing	  
and	  the	  wind.	  Can.	  J.	  Zool.	  93,	  977-‐990.	  
[19]	  Bomphrey,	  R.J.,	  Henningsson,	  P.,	  Michaelis,	  D.	  &	  Hollis,	  D.	  2012	  Tomographic	  
particle	  image	  velocimetry	  of	  desert	  locust	  wakes:	  instantaneous	  volumes	  
combine	  to	  reveal	  hidden	  vortex	  elements	  and	  rapid	  wake	  deformation.	  J.	  R.	  Soc.	  
Interface	  9,	  3378-‐3386.	  
[20]	  Henningsson,	  P.	  &	  Bomphrey,	  R.J.	  2013	  Span	  efficiency	  in	  hawkmoths.	  J.	  R.	  
Soc.	  Interface	  10,	  1742-‐5662	  (doi:10.1098/rsif.2013.0099).	  
[21]	  Johansson,	  L.C.	  &	  Hedenström,	  A.	  2009	  The	  vortex	  wake	  of	  blackcaps	  (Sylvia	  
atricapilla	  L.)	  measured	  using	  high-‐speed	  digital	  particle	  image	  velocimetry	  
(DPIV).	  J.	  Exp.	  Biol.	  212,	  3365-‐3376.	  
[22]	  Henningsson,	  P.	  &	  Hedenstrom,	  A.	  2011	  Aerodynamics	  of	  gliding	  flight	  in	  
common	  swifts.	  J.	  Exp.	  Biol.	  214,	  382-‐393.	  
[23]	  Muijres,	  F.T.,	  Johansson,	  L.C.,	  Winter,	  Y.	  &	  Hedenström,	  A.	  2011	  Comparative	  
aerodynamic	  performance	  of	  flapping	  flight	  in	  two	  bat	  species	  using	  time-‐
resolved	  wake	  visualization.	  J.	  R.	  Soc.	  Interface	  211,	  2909-‐2918.	  
[24]	  Hubel,	  T.Y.,	  Hristov,	  N.I.,	  Swartz,	  S.M.	  &	  Breuer,	  K.S.	  2012	  Changes	  in	  
kinematics	  and	  aerodynamics	  over	  a	  range	  of	  speeds	  in	  Tadarida	  brasiliensis,	  the	  
Brazilian	  free-‐tailed	  bat.	  J.	  R.	  Soc.	  Interface	  9,	  1120-‐1130.	  
[25]	  Norberg,	  U.M.	  &	  Rayner,	  J.M.V.	  1987	  Ecological	  morphology	  and	  flight	  in	  
bats	  (Mammalia;	  Chiroptera):	  wing	  adaptations,	  flight	  performance,	  foraging	  
strategy	  and	  echolocation.	  Phil.	  Trans.	  R.	  Soc.	  Lond.	  B	  316,	  335-‐427.	  
[26]	  Brewer,	  M.L.	  &	  Hertel,	  F.	  2007	  Wing	  morphology	  and	  flight	  behavior	  of	  
pelecaniform	  seabirds.	  J.	  Morphol.	  268,	  866-‐877.	  
[27]	  Johansson,	  F.,	  Söderquist,	  M.	  &	  Bokma,	  F.	  2009	  Insect	  wing	  shape	  evolution:	  
independent	  effects	  of	  migratory	  and	  mate	  guarding	  flight	  on	  dragonfly	  wings.	  
Biol.	  J.	  Linn.	  Soc.	  97,	  362-‐372.	  
[28]	  Lockwood,	  R.,	  Swaddle,	  J.P.	  &	  Rayner,	  J.M.	  1998	  Avian	  wingtip	  shape	  
reconsidered:	  wingtip	  shape	  indices	  and	  morphological	  adaptations	  to	  
migration.	  J.	  Avian	  Biol.,	  273-‐292.	  
[29]	  Marchetti,	  K.,	  Price,	  T.	  &	  Richman,	  A.	  1995	  Correlates	  of	  wing	  morphology	  
with	  foraging	  behaviour	  and	  migration	  distance	  in	  the	  genus	  Phylloscopus.	  J.	  
Avian	  Biol.,	  177-‐181.	  
[30]	  Muijres,	  F.T.,	  Spedding,	  G.R.,	  Winter,	  Y.	  &	  Hedenström,	  A.	  2011	  Actuator	  disk	  
model	  and	  span	  efficiency	  of	  flapping	  flight	  in	  bats	  based	  on	  time-‐resolved	  PIV	  
measurements.	  Exp.	  Fluids	  51,	  511-‐525.	  



	   19	  

[31]	  Hedenström,	  A.,	  Muijres,	  F.,	  von	  Busse,	  R.,	  Johansson,	  L.,	  Winter,	  Y.	  &	  
Spedding,	  G.	  2009	  High-‐speed	  stereo	  DPIV	  measurement	  of	  wakes	  of	  two	  bat	  
species	  flying	  freely	  in	  a	  wind	  tunnel.	  Exp.	  Fluids	  46,	  923-‐932.	  
[32]	  Hubel,	  T.,	  Hristov,	  N.,	  Swartz,	  S.M.	  &	  Breuer,	  K.S.	  2009	  Time-‐resolved	  wake	  
structure	  and	  kinematics	  of	  bat	  flight.	  Exp.	  Fluids	  46,	  933-‐943.	  
[33]	  Hubel,	  T.Y.,	  Riskin,	  D.K.,	  Swartz,	  S.M.	  &	  Breuer,	  K.S.	  2010	  Wake	  structure	  and	  
wing	  kinematics:	  the	  flight	  of	  the	  lesser	  dog-‐faced	  fruit	  bat,	  Cynopterus	  
brachyotis.	  J.	  Exp.	  Biol.	  213,	  3427-‐3440.	  
[34]	  von	  Busse,	  R.,	  Waldman,	  R.M.,	  Swartz,	  S.M.,	  Voigt,	  C.C.	  &	  Breuer,	  K.S.	  2014	  
The	  aerodynamic	  cost	  of	  flight	  in	  the	  short-‐tailed	  fruit	  bat	  (Carollia	  perspicillata):	  
comparing	  theory	  with	  measurement.	  J.	  R.	  Soc.	  Interface	  11,	  20140147.	  
[35]	  Hedenström,	  A.	  &	  Johansson,	  L.C.	  2015	  Bat	  flight:	  aerodynamics,	  kinematics	  
and	  flight	  morphology.	  The	  Journal	  of	  experimental	  biology	  218,	  653-‐663.	  
[36]	  Henningsson,	  P.,	  Muijres,	  F.T.	  &	  Hedenström,	  A.	  2010	  Time-‐resolved	  vortex	  
wake	  of	  a	  common	  swift	  flying	  over	  a	  range	  of	  flight	  speeds.	  J.	  R.	  Soc.	  Interface	  8,	  
807-‐816.	  
[37]	  Shi,	  J.J.	  &	  Rabosky,	  D.L.	  2015	  Speciation	  dynamics	  during	  the	  global	  
radiation	  of	  extant	  bats.	  Evolution	  69,	  1528-‐1545.	  
[38]	  Glass,	  B.P.	  1982	  Seasonal	  movements	  of	  Mexican	  freetail	  bats,	  Tadarida	  
brasiliensis	  mexicana,	  banded	  in	  the	  Great	  Plains.	  Southwest.	  Nat.	  27,	  127-‐133.	  
[39]	  Barbour,	  R.W.D.,	  Barbour,	  W.H.R.W.	  &	  Davis,	  W.H.	  1969	  Bats	  of	  America.	  
[40]	  Williams,	  T.C.,	  Ireland,	  L.C.	  &	  Williams,	  J.M.	  1973	  High	  altitude	  flights	  of	  the	  
free-‐tailed	  bat,	  Tadarida	  brasiliensis,	  observed	  with	  radar.	  J.	  Mammal.	  54,	  807-‐
821.	  
[41]	  Wilkins,	  K.T.	  1989	  Tadarida	  brasiliensis.	  Mamm.	  Species	  331,	  1-‐10.	  
[42]	  Nowak,	  R.M.	  1994	  Walker's	  bats	  of	  the	  world,	  JHU	  Press.	  
[43]	  Norberg,	  U.M.	  1990	  Vertebrate	  flight:	  mechanics,	  physiology,	  morphology,	  
ecology	  and	  evolution.	  Berlin,	  Springer-‐Verlag.	  
[44]	  Findley,	  J.S.,	  Studier,	  E.H.	  &	  Wilson,	  D.E.	  1972	  Morphologic	  properties	  of	  bat	  
wings.	  J.	  Mammal.	  53,	  429-‐444.	  
[45]	  Fitch,	  J.H.,	  Shump,	  K.A.	  &	  Shump,	  A.U.	  1981	  Myotis	  velifer.	  Mamm.	  Species	  
149,	  1–5.	  
[46]	  Rayner,	  J.M.	  1991	  On	  the	  aerodynamics	  of	  animal	  flight	  in	  ground	  effect.	  
Philosophical	  Transactions	  of	  the	  Royal	  Society	  of	  London	  B:	  Biological	  Sciences	  
334,	  119-‐128.	  
[47]	  Aldridge,	  H.	  1986	  Manoeuvrability	  and	  ecological	  segregation	  in	  the	  little	  
brown	  (Myotis	  lucifugus)	  and	  Yuma	  (M.	  yumanensis)	  bats	  (Chiroptera:	  
Vespertilionidae).	  Can.	  J.	  Zool.	  64,	  1878-‐1882.	  
[48]	  Abdel-‐Aziz,	  Y.	  &	  Karara,	  H.,	  1971,	  Direct	  linear	  transformation	  into	  object	  
space	  coordinates	  in	  close-‐range	  photogrammetry,	  Proceedings	  of	  the	  Symposium	  
on	  Close-‐Range	  Photogrammetry	  Falls	  Church,	  Virginia,	  U.S.A.,	  1-‐18	  
[49]	  Riskin,	  D.K.,	  Iriarte-‐Diaz,	  J.,	  Middleton,	  K.M.,	  Breuer,	  K.S.	  &	  Swartz,	  S.M.	  2010	  
The	  effect	  of	  body	  size	  on	  the	  wing	  movements	  of	  pteropodid	  bats,	  with	  insights	  
into	  thrust	  and	  lift	  production.	  J.	  Exp.	  Biol.	  213,	  4110-‐4122.	  
[50]	  Adrian,	  R.J.,	  Christensen,	  K.T.	  &	  Liu,	  Z.C.	  2000	  Analysis	  and	  interpretation	  of	  
instantaneous	  turbulent	  velocity	  fields.	  Exp.	  Fluids	  29,	  275-‐290.	  
[51]	  Johansson,	  L.C.,	  Wolf,	  M.,	  von	  Busse,	  R.,	  Winter,	  Y.,	  Spedding,	  G.R.	  &	  
Hedenström,	  A.	  2008	  The	  near	  and	  far	  wake	  of	  Pallas'	  long	  tongued	  bat	  
(Glossophaga	  soricina).	  J.	  Exp.	  Biol.	  211,	  2909-‐2918.	  



	   20	  

[52]	  Von	  Busse,	  R.,	  Hedenstrom,	  A.,	  Winter,	  Y.	  &	  Johansson,	  L.C.	  2012	  Kinematics	  
and	  wing	  shape	  across	  flight	  speed	  in	  the	  bat,	  Leptonycteris	  yerbabuenae.	  Biology	  
Open	  1,	  1226-‐1238.	  (doi:10.1242/bio.20122964).	  
[53]	  Hedenström,	  A.,	  Johansson,	  L.C.,	  Wolf,	  M.,	  von	  Busse,	  R.,	  Winter,	  Y.	  &	  
Spedding,	  G.R.	  2007	  Bat	  flight	  generates	  complex	  aerodynamic	  tracks.	  Science	  
316,	  894-‐897.	  
[54]	  Muijres,	  F.T.,	  Johansson,	  L.C.,	  Bowlin,	  M.S.,	  Winter,	  Y.	  &	  Hedenstrom,	  A.	  2012	  
Comparing	  Aerodynamic	  Efficiency	  in	  Birds	  and	  Bats	  Suggests	  Better	  Flight	  
Performance	  in	  Birds.	  PLoS	  ONE	  7,	  e37335.	  
(doi:10.1371/journal.pone.0037335).	  
[55]	  Henningsson,	  P.,	  Spedding,	  G.R.	  &	  Hedenström,	  A.	  2008	  Vortex	  wake	  and	  
flight	  kinematics	  of	  a	  swift	  in	  cruising	  flight	  in	  a	  wind	  tunnel.	  J.	  Exp.	  Biol.	  211,	  
717-‐730.	  
[56]	  Bomphrey,	  R.J.,	  Taylor,	  G.K.	  &	  Thomas,	  A.L.	  2009	  Smoke	  visualization	  of	  
free-‐flying	  bumblebees	  indicates	  independent	  leading-‐edge	  vortices	  on	  each	  
wing	  pair.	  Exp.	  Fluids	  46,	  811-‐821.	  
[57]	  Wolf,	  M.,	  Johansson,	  L.C.,	  von	  Busse,	  R.,	  Winter,	  Y.	  &	  Hedenstrom,	  A.	  2010	  
Kinematics	  of	  flight	  and	  the	  relationship	  to	  the	  vortex	  wake	  of	  a	  Pallas'	  long	  
tongued	  bat	  (Glossophaga	  soricina).	  J.	  Exp.	  Biol.	  213,	  2142-‐2153.	  
[58]	  Spedding,	  G.	  &	  McArthur,	  J.	  2010	  Span	  efficiencies	  of	  wings	  at	  low	  Reynolds	  
numbers.	  Journal	  of	  Aircraft	  47,	  120-‐128.	  
[59]	  Anderson,	  J.D.	  2001	  Fundamentals	  of	  aerodynamics.	  3rd	  ed,	  Tata	  McGraw-‐
Hill	  Education.	  
[60]	  Henningsson,	  P.,	  Michaelis,	  D.,	  Nakata,	  T.,	  Schanz,	  D.,	  Geisler,	  R.,	  Schröder,	  A.	  
&	  Bomphrey,	  R.J.	  2015	  The	  complex	  aerodynamic	  footprint	  of	  desert	  locusts	  
revealed	  by	  large-‐volume	  tomographic	  particle	  image	  velocimetry.	  J.	  R.	  Soc.	  
Interface	  12,	  20150119.	  
[61]	  Brodsky,	  A.	  1991	  Vortex	  formation	  in	  the	  tethered	  flight	  of	  the	  peacock	  
butterfly	  Inachis	  io	  L.(Lepidoptera,	  Nymphalidae)	  and	  some	  aspects	  of	  insect	  
flight	  evolution.	  J.	  Exp.	  Biol.	  161,	  77-‐95.	  
[62]	  Davies,	  N.B.	  1977	  Prey	  selection	  and	  the	  search	  strategy	  of	  the	  spotted	  
flycatcher	  (Muscicapa	  striata):	  a	  field	  study	  on	  optimal	  foraging.	  Anim.	  Behav.	  25,	  
1016-‐1033.	  
	  



	   21	  

FIGURES 

	  
Figure	  1:	  Anatomical	  features,	  marker	  positions	  and	  kinematic	  parameters.	  (a)	  dorsal	  

view;	  φ , sweep	  angle,	  proximal	  plane	  is	  shaded	  green,	  distal	  plane	  is	  shaded	  blue,	  (b)	  

front	  view;	   θ , flex	  angle;	  Θ ,amplitude	  angle	  (c)	  simplified	  side	  view	  (wing	  only);	  α 	  =	  

angle	  of	  attack,	  β  =	  stroke	  plane	  angle,	  Ut	  =	  total	  forward	  speed,	  vwing	  =	  wing	  velocity	  at	  

wrist.	  

	  
Figure	  2:	  Dorsal	  view	  of	  M.	  velifer	  and	  T.	  brasiliensis	  at	  low	  speed,	  mid-‐downstroke.	  Tail	  

area	  (fine	  dashed	  line);	  mid-‐body	  width	  (arrows);	  5-‐point	  wing	  area	  (solid	  line)	  and	  

contour	  area	  (dashed	  line).	  
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Figure	  3:	  Variation	  in	  kinematic	  parameters	  across	  flight	  speed	  for	  M.	  velifer	  and	  T.	  

brasiliensis.	  (a)	  frequency,	  (b)	  amplitude,	  (c)	  downstroke	  ratio,	  (d)	  span	  ratio,	  (e)	  

maximum	  half	  wingspan,	  (f)	  maximum	  chord,	  (g)	  minimum	  body	  wing	  tip	  distance,	  (h)	  

stroke	  plane	  angle,	  (i)	  angle	  of	  attack	  mid	  downstroke,	  (j)	  mean	  angle	  of	  attack,	  (k)	  mean	  

sweep	  angle,	  (l)	  mean	  flexion	  angle.	  All	  graphs	  represent	  the	  best	  fit	  of	  the	  mixed	  effect	  

model	  for	  each	  species;	  the	  shaded	  areas	  represent	  the	  standard	  error.	  p-‐values	  lower	  

than	  0.05	  indicate	  significant	  difference	  in	  slope	  between	  species.	  
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Figure	  4:	  (a	  –	  f):	  Average	  trajectory	  of	  the	  wingtip,	  wrist,	  tip	  of	  the	  digit	  V	  (dig.	  V),	  and	  

ankle	  in	  body-‐referenced	  coordinate	  system	  for	  M.	  velifer	  (green)	  and	  T.	  brasiliensis	  

(brown)	  in	  two	  different	  speed	  groups.	  Star	  indicates	  body	  marker	  position	  in	  bat-‐

centred	  coordinate	  system.	  For	  graphic	  comparison	  speeds	  were	  grouped	  in	  low,	  
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medium	  and	  high	  speeds,	  trajectories	  based	  on	  the	  mean	  of	  all	  individual	  means	  in	  these	  

groups,	  shaded	  intervals	  indicate	  standard	  error	  between	  individual	  means.	  Trajectories	  

displayed	  at	  low	  (a	  –	  c)	  and	  high	  (d	  –	  f)	  speeds	  (medium	  speed	  not	  displayed).	  (i	  –	  l):	  

Speed-‐dependent	  wrist	  kinematics	  M.	  velifer	  and	  T.	  brasiliensis	  at	  low,	  medium	  and	  high	  

speeds;	  downstroke	  indicated	  by	  shading	  (downstroke	  shorter	  at	  higher	  speeds,	  darker	  

shading	  indicates	  period	  of	  variation).	  (g,	  h)	  Wrist	  sweep	  angle:	  φ.	  (i,	  j)	  Wrist	  flexion	  

angle: θ,	  dashed	  line	  indicates	  no	  flexion	  between	  proximal	  and	  distal	  wing	  or	  ‘flat	  plate’	  

condition.	  (k,	  l)	  Angle	  of	  attack	  based	  on	  armwing	  or	  proximal	  plane.	  	  

	  
Figure	  5:	  Wake	  reconstruction	  for	  M.	  velifer	  and	  T.	  brasiliensis	  at	  low	  and	  high	  speed.	  (a-‐

d)	  M.	  velifer,	  (a,b)	  dorsal	  view	  and	  (c,d)	  side	  view	  at	  (a,c)	  low	  (Ut=	  4.8	  ms-‐1)	  and	  (b,d)	  

high	  speed	  (Ut	  =	  8.1	  ms-‐1);	  (e-‐h)	  T.	  brasiliensis,	  (e,f)	  dorsal	  view	  and	  (g,h)	  side	  view	  at	  

(e,g)	  low	  (Ut=	  5.1	  ms-‐1)	  and	  (f,h)	  high	  speed	  (Ut=	  7.0	  ms-‐1).	  Isosurfaces	  of	  transverse	  

swirl	  are	  based	  on	  2D	  PIV;	  path	  of	  right	  wingtip:	  green	  line,	  path	  of	  right	  wrist:	  black	  

line,	  path	  of	  body:	  blue	  line.	  Vortices	  are	  coloured	  based	  on	  circulation	  and	  rotational	  

direction,	  with	  counter-‐clockwise	  rotating	  vortices	  positive	  (red);	  tip	  vortex:	  V1,	  root	  

vortex:	  V2,	  distal	  vortex	  pair:	  V3	  and	  V4,	  distance	  travelled	  in	  flow	  stream	  direction	  in	  

chord	  lengths:	  x/c,	  distance	  perpendicular	  to	  midline	  in	  chord	  lengths:	  y/c.	  	  
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Figure	  6:	  Average	  circulation	  for	  each	  vortex	  (V1–V4)	  normalised	  by	  speed	  and	  body	  

weight	  (tip	  vortex:	  V1,	  root	  vortex:	  V2,	  distal	  vortex	  pair:	  V3	  and	  V4)	  for	  different	  speed	  

categories.	  (a-‐c)	  M.	  velifer,	  (d-‐f)	  T.	  brasiliensis	  at	  (a,d)	  low,	  (b,e)	  medium	  and	  (c,f)	  high	  

speeds.	  Dashed	  lines	  in	  a-‐c	  show	  normalised	  circulations	  for	  tip	  (V1)	  and	  root	  (V2)	  

vortices	  in	  T.	  brasiliensis.	  Shaded	  intervals:	  Mean	  +-‐	  s.e.	  of	  individual	  means,	  grey	  

shading	  denotes	  downstroke.	  	  
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TABLES 

	  

Table	  1:	  Morphology	  of	  study	  subjects	  and	  number	  of	  trials	  analysed	  for	  each	  individual.	  

Note:	  body	  width	  and	  tail	  area	  were	  from	  frames	  of	  high	  speed	  video	  at	  time	  of	  

maximum	  wing	  extension	  (one	  per	  individual).	  All	  other	  means	  (+	  S.D.)	  were	  extracted	  

from	  flights	  at	  low	  speed	  from	  of	  a	  total	  of	  25	  wingbeat	  cycles	  in	  M.	  velifer	  and	  57	  in	  T.	  

brasiliensis.	   
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Table	  2:	  Kinematics	  in	  Myotis	  velifer	  and	  Tadarida	  brasiliensis	  for	  three	  flight	  speed	  

categories.	  Means,	  p-‐	  and	  p’	  corrected	  p-‐values	  (using	  sequential	  Bonferroni),	  degrees	  of	  

freedom	  and	  t-‐values.	  

	  
	  

Table	  3:	  Percentage	  occurrence,	  O,	  of	  root	  (V2)	  and	  distal	  vortex	  pair	  (V3/V4)	  in	  relation	  

to	  species	  and	  speed	  category,	  based	  on	  manual	  assessment	  of	  vorticity	  fields	  with	  a	  

noise	  reduction	  threshold	  of	  +	  -‐5	  s-‐1	  vorticity.	  
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SUPPLEMENTARY	  MATERIAL	  

	  

	  
	  

Suppl.	  Fig.	  1:	  a	  –	  f:	  Average	  trajectory	  of	  the	  wingtip,	  wrist,	  tip	  of	  digit	  V	  (dig.	  V),	  and	  

ankle	  in	  body-‐referenced	  coordinate	  system,	  normalized	  by	  wing	  chord	  for	  M.	  velifer	  

(green)	  and	  T.	  brasiliensis	  (brown).	  Star	  indicates	  body	  marker	  position.	  For	  graphic	  

comparison	  trials	  were	  grouped	  in	  low,	  medium	  and	  high	  speeds.	  Trajectories	  displayed	  

from	  low	  (a	  –	  c)	  and	  high	  (d	  –	  f	  )	  speeds	  (medium	  speed	  not	  displayed).	  	  

	  



	   29	  

	  
	  

Suppl.	  Fig.	  2:	  Vector	  velocity	  fields	  and	  streamwise	  velocity	  for	  and	  M	  velifer	  (a-‐d,	  at	  

speed	  4.81	  ms-‐1)	  T.	  brasiliensis	  (e-‐l,	  at	  speed	  5.1	  ms-‐1).	  Mid	  upstroke	  (a,	  e),	  upper	  

reversal	  point	  (b,	  f),	  mid	  downstroke	  (c,	  g),	  lower	  reversal	  point	  (d,	  h).	  Star:	  position	  of	  

midline	  trunk	  marker,	  wrist	  trajectory:	  black	  line.	  	  wingtip	  trajectory:	  green	  line,	  

location	  of	  marker	  at	  point	  of	  cycle	  depicted	  in	  image	  indicated	  by	  open	  circle	  (wrist	  =	  

black,	  wingtip	  =	  green).	  V1:	  tip	  vortex,	  V2:	  root	  vortex,	  V3	  and	  V4:	  distal	  vortex	  pair.	  	  	  	  
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Suppl.	  Table	  1:	  Change	  in	  kinematics	  with	  flight	  speed	  in	  (a)	  M.	  velifer	  and	  (b)	  T.	  

brasiliensis.	  p’-‐values:	  p-‐values	  corrected	  using	  sequential	  Bonferroni.	  (N	  =	  5	  

individuals;	  n	  =	  71	  wingbeat	  cycles).	  Grey	  arrows	  indicate	  significance	  for	  only	  

uncorrected	  p-‐values.	  Linear	  mixed	  effect	  model.	  

	  

	  


