125 research outputs found
Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity
Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by
alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var.
cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging
from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4).
All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show
differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl
esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3
also accepts a wide range of substrates but with very strong preference for producing benzyl acetate.
Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl
acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is
related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating
268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished
activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase
during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in
antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene
(1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the
multiplicity of AAT genes accounts for the great diversity of esters formed in melon
- …