37 research outputs found
Treatment of Upper Respiratory Tract Infections in Primary Care: A Randomized Study Using Aromatic Herbs
This study is a prospective randomized double-blind controlled trial whose aim was to investigate the clinical effects of aromatic essential oils in patients with upper respiratory tract infections. The trial was conducted in six primary care clinics in northern Israel. A spray containing aromatic essential oils of five plants (Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Origanum syriacum, and Rosmarinus officinalis) as applied 5 times a day for 3 days and compared with a placebo spray. The main outcome measure was patient assessment of the change in severity of the most debilitating symptom (sore throat, hoarseness or cough). Sixty patients participated in the study (26 in the study group and 34 in the control group). Intention-to-treat analysis showed that 20 minutes following the spray use, participants in the study group reported a greater improvement in symptom severity compared to participants in the placebo group (P = .019). There was no difference in symptom severity between the two groups after 3 days of treatment (P = .042). In conclusion, spray application of five aromatic plants reported in this study brings about significant and immediate improvement in symptoms of upper respiratory ailment. This effect is not significant after 3 days of treatment
Salinity Stress Does Not Affect Root Uptake, Dissemination and Persistence of Salmonella in Sweet-basil (Ocimum basilicum)
Crop produce can be contaminated in the field during cultivation by bacterial human pathogens originating from contaminated soil or irrigation water. The bacterial pathogens interact with the plant, can penetrate the plant via the root system and translocate and survive in above-ground tissues. The present study is first to investigate effects of an abiotic stress, salinity, on the interaction of plants with a bacterial human pathogen. The main sources of human bacterial contamination of plants are manures and marginal irrigation waters such as treated or un-treated wastewater. These are often saline and induce morphological, chemical and physiological changes in plants that might affect the interaction between the pathogens and the plant and thereby the potential for plant contamination. This research studied effects of salinity on the internalization of the bacterial human pathogen Salmonella enterica serovar Newport via the root system of sweet-basil plants, dissemination of the bacteria in the plant, and kinetics of survival in planta. Irrigation with 30 mM NaCl-salinity induced typical salt-stress effects on the plant: growth was reduced, Na and Cl concentrations increased, K and Ca concentrations reduced, osmotic potential and anti-oxidative activity were increased by 30%, stomatal conductance was reduced, and concentrations of essential-oils in the plants increased by 26%. Despite these physical, chemical and morphological changes in the plants, root internalization of the bacteria and its translocation to the shoot were not affected, and neither was the die-off rate of Salmonella in planta. The results demonstrate that the salinity-induced changes in the sweet-basil plants did not affect the interaction between Salmonella and the plant and thereby the potential for crop contamination
Recommended from our members
Rapid screening methods to identify chilling tolerance in sweet basil (\u3cem\u3eOcimum basilicum\u3c/em\u3e L.)
Medicinal and Aromatic Plants of the Middle-East
X, 337 p. 81 illus., 39 illus. in color.online re
Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)
Background: Commiphora gileadensis (Hebrew: apharsemon) has been used since Biblical times to treat various ailments, and is used today in the traditional medicine of some Middle Eastern cultures. Methods: The essential oils from the stem bark, leaves, and fruits of Commiphora gileadensis—collected at the Ein Gedi Botanical Garden, Israel—were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. In addition, the enantiomeric distributions of the monoterpenoids in the essential oils have been determined by chiral gas chromatography. Results: The essential oils were dominated by monoterpene hydrocarbons, followed by oxygenated monoterpenoids. The major components in C. gileadensis oils were the monoterpenes α-pinene (11.1–18.4%), sabinene (15.8–35.9%), β-pinene (5.8–18.0%), p-cymene (4.8–8.4%), limonene (1.3–6.2%), γ-terpinene (0.7–8.1%), and terpinen-4-ol (5.3–18.5%). The (–)-enantiomers predominated for α-pinene, sabinene, β-pinene, limonene, and terpinen-4-ol. Conclusions: The chemical compositions of the C. gileadensis essential oils from Israel are markedly different from previously reported samples, which were rich in sesquiterpenoids. Likewise, the enantiomeric distribution of monoterpenoids is very different from Boswellia spp. essential oils
Whitefly attraction to rosemary (Rosmarinus officinialis L.) is associated with volatile composition and quantity.
Whitefly (Bemisia tabaci) is an important insect pest, causing severe damage to agricultural crops. The pest was recorded in a commercial rosemary (Rosmarinus officinalis, Lamiaceae) field, colonizing rosemary variety (var.) '2', but not '11'. A series of field and controlled laboratory choice bioassays confirmed the observed phenomenon. Mature potted plants of the two varieties were randomly organized in a lemon verbena (Lippia citrodora) and lemon grass (Cymbopogon spp.) fields. Seven days later var. '2' was significantly more colonized by whiteflies than var. '11'. Under lab conditions, whiteflies were significantly more attracted to var. '2' plantlets than to var. '11' following choice bioassays. Furthermore, cotton plants dipped in an essential oil emulsion of var. '2' had significantly greater colonization than cotton plants dipped in the essential oil emulsion of var. '11'. Similar results were obtained in 'plant-plant', 'plant-no plant' as well as, 'essential oil-essential oil' choice bioassay designs. Analyses of the essential oils of the two varieties identified a set of common and unique volatiles in each variety. Among these volatiles were β-caryophyllene and limonene, two compounds known to be associated with plant-insect interactions. The attraction of B. tabaci to pure (>95%) β-caryophyllene and limonene using a range of concentrations was examined in vitro by choice bioassays. The compounds were attractive to the insect at moderate concentration, but not at the lowest or highest concentrations used, where the insect was not attracted or repelled, respectively. Limonene attracted the insects at rates that were 10-fold lower than β-caryophyllene. The results emphasized the role of host plant volatiles in shaping the structure of B. tabaci populations in nature and in agricultural systems, and provided insights into the factors that contribute to the development of insect populations with unique characteristics. The results could also serve for future development of bio-pesticides and in breeding programs
β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines
The biblical balm of Gilead (Commiphora gileadensis) was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S)-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene) is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells
Molecular Mode of Action of Asteriscus graveolens as an Anticancer Agent
Asteriscus graveolens (A. graveolens) plants contain among other metabolites, sesquiterpene lactone asteriscunolide isomers (AS). The crude extract and its fractions affected the viability of mouse BS-24-1 lymphoma cells (BS-24-1 cells) with an IC50 of 3 μg/mL. The fraction was cytotoxic to cancer cells but not to non-cancerous cells (human induced pluripotent stem cells); its activity was accompanied by a concentration- and time-dependent appearance of apoptosis as determined by DNA fragmentation and caspase-3 activity. High levels of Reactive Oxygen Species (ROS) were rapidly observed (less than 1 min) after addition of the fraction followed by an increase in caspase-3 activity three hours later. Comparison of RNA-seq transcriptome profiles from pre-and post-treatment of BS-24-1 cells with crude extract of A. graveolens yielded a list of 2293 genes whose expression was significantly affected. This gene set included genes encoding proteins involved in cell cycle arrest, protection against ROS, and activation of the tumor suppressor P53 pathway, supporting the biochemical findings on ROS species-dependent apoptosis induced by A. graveolens fraction. Interestingly, several of the pathways and genes affected by A. graveolens extract are expressed following treatment of human cancer cells with chemotherapy drugs. We suggest, that A. graveolens extracts maybe further developed into selective chemotherapy
Downy Lavender Oil: A Promising Source of Antimicrobial, Antiobesity, and Anti-Alzheimer’s Disease Agents
Lavandula pubescens Decne (LP) is one of the three Lavandula species growing wildly in the Dead Sea Valley, Palestine. The products derived from the plant, including the essential oil (EO), have been used in Traditional Arabic Palestinian Herbal Medicine (TAPHM) for centuries as therapeutic agents. The EO is traditionally believed to have sedative, anti-inflammatory, antiseptic, antidepressive, antiamnesia, and antiobesity properties. This study was therefore aimed to assess the in vitro bioactivities associated with the LP EO. The EO was separated by hydrodistillation from the aerial parts of LP plants and analyzed for its antioxidant, antimicrobial, anticholinesterase, and antilipase activities. GC-MS was used for phytochemical analysis. The chemical analysis of the EO composition revealed 25 constituents, of which carvacrol (65.27%) was the most abundant. EO exhibited strong antioxidant (IC50 0.16–0.18 μL/mL), antiacetylcholinesterase (IC50 0.9 μL/mL), antibutyrylcholinesterase (IC50 6.82 μL/mL), and antilipase (IC50 1.08 μL/mL) effects. The EO also demonstrated high antibacterial activity with the highest susceptibility observed for Staphylococcus aureus with 95.7% inhibition. The EO was shown to exhibit strong inhibitory activity against Candida albicans (MIC 0.47 μL/mL). The EO was also shown to possess strong antidermatophyte activity against Microsporum canis, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum (EC50 0.05–0.06 μL/mL). The high antioxidant, enzyme inhibitory, and antimicrobial potentials of the EO can, therefore, be correlated with its high content of monoterpenes, especially carvacrol, as shown by its comparable bioactivities indicators results. This study provided new insights into the composition and bioactivities of LP EO. Our finding revealed evidence that LP EO makes a valuable natural source of bioactive molecules showing substantial potential as antioxidant, neuroprotective, antihyperlipidemic, and antimicrobial agents. This study demonstrates, for the first time, that LP EO might be useful for further investigation aiming at integrative CAM and clinical applications in the management of dermatophytosis, Alzheimer’s disease, and obesity
Physiological Conjunction of Allelochemicals and Desert Plants
<div><p>Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, <i>Origanum dayi</i>, <i>Artemisia sieberi</i> and <i>Artemisia judaica</i> from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. <i>A</i>. <i>judaica</i> showed the least metabolic shifts, while <i>A</i>. <i>sieberi</i> showed the highest shifts. All the species exhibited high allelopathic effects; <i>A. judaica</i> displayed relatively higher growth-inhibition effects, while <i>O. dayi</i> showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.</p></div