11 research outputs found

    BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL.

    Get PDF
    Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL

    Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China.

    Get PDF
    A recent genome-wide association study of lung cancer among never-smoking females in Asia demonstrated that the rs2736100 polymorphism in the TERT-CLPTM1L locus on chromosome 5p15.33 was strongly and significantly associated with risk of adenocarcinoma of the lung. The telomerase gene TERT is a reverse transcriptase that is critical for telomere replication and stabilization by controlling telomere length. We previously found that longer telomere length measured in peripheral white blood cell DNA was associated with increased risk of lung cancer in a prospective cohort study of smoking males in Finland. To follow up on this finding, we carried out a nested case-control study of 215 female lung cancer cases and 215 female controls, 94% of whom were never-smokers, in the prospective Shanghai Women's Health Study cohort. There was a dose-response relationship between tertiles of telomere length and risk of lung cancer (odds ratio (OR), 95% confidence interval [CI]: 1.0, 1.4 [0.8-2.5], and 2.2 [1.2-4.0], respectively; P trend = 0.003). Further, the association was unchanged by the length of time from blood collection to case diagnosis. In addition, the rs2736100 G allele, which we previously have shown to be associated with risk of lung cancer in this cohort, was significantly associated with longer telomere length in these same study subjects (P trend = 0.030). Our findings suggest that individuals with longer telomere length in peripheral white blood cells may have an increased risk of lung cancer, but require replication in additional prospective cohorts and populations

    The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis

    No full text
    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies

    IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma.

    No full text
    Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; however, a subset of patients progressed within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor-relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemotherapy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could prevent ALK inhibitor resistance-specific relapse
    corecore