32 research outputs found

    Factor v Has Anticoagulant Activity in Plasma in the Presence of TFPI\u3b1: Difference between FV1 and FV2

    No full text
    Background Activated factor V (FVa) is a potent procoagulant cofactor in the prothrombinase complex, whereas its precursor factor V (FV) stimulates the inhibition of factor Xa (FXa) by tissue factor pathway inhibitor-alpha (TFPI alpha), presumably by promoting TFPI alpha binding to phospholipids. Plasma FV comprises two glycosylation isoforms (FV1 and FV2) with low and high phospholipid-binding affinity, respectively. The FV1/FV2 ratio is increased in carriers of the FV R2 haplotype. Objective This article demonstrates the TFPI alpha-cofactor function of FV in plasma and compares FV1 and FV2. Materials and Methods Thrombin generation at low TF concentration was measured in FV-depleted plasma reconstituted with 0 to 100% FV, FV1 or FV2, and in 122 individuals genotyped for the R2 haplotype. The TFPI-cofactor activities of FV1 and FV2 were also investigated in a model system of TFPI alpha-mediated FXa inhibition. Results In the FV titration, thrombin generation first increased (up to 5% FV) and then progressively decreased at higher FV concentrations. This anticoagulant effect of FV, which was also observed with FV2 but not with FV1, was largely abolished by anti-TFPI alpha antibodies, suggesting that it reflects TFPI alpha-cofactor activity of FV. In the model system of TFPI alpha-mediated FXa inhibition, FV2 was a more potent TFPI alpha-cofactor than FV1, in line with their respective phospholipid affinities. Accordingly, FV R2 carriers had higher thrombin generation than non-carriers, even after correction for demographics and plasma levels of coagulation factors and inhibitors. Conclusion FV (and particularly its FV2 isoform) contributes to the TFPI alpha-dependent down-regulation of thrombin generation in plasma triggered with low TF

    Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial.

    Full text link
    peer reviewedAIMS: The SEISMIC study was an open-label, prospective, randomised study to assess the safety and feasibility of percutaneous myoblast implantation in heart failure patients with implanted cardioverter-defibrillators (ICD). METHODS AND RESULTS: Patients were randomised 2:1 to autologous skeletal myoblast therapy vs. optimal medical treatment. The primary safety end-point was defined as the incidence of procedural and device related serious adverse events, whereas the efficacy endpoints were defined as the change in global LVEF by MUGA scan, change in NYHA classification of heart failure and in the distance achieved during a six-minute walk test (6MW) at 6-month follow-up. Forty subjects were randomised to the treatment arm (n=26), or to the control arm (n=14). There were 12 sustained arrhythmic events and one death after episodes of ventricular tachycardia (VT) in the treatment group and 14 events in the control group (P=ns). At 6-month follow-up, 6MW distance improved by 60.3+/-54.1?meters in the treated group as compared to no improvement in the control group (0.4+/-185.7?meters; P=ns). In the control group, 28.6% experienced worsening of heart failure status (4/14), while 14.3% experienced an improvement in NYHA classification (2/14). In the myoblast-treatment arm, one patient experienced a deterioration in NYHA classification (8.0%), whereas five patients improved one or two classes (20.0%; P=0.06). However, therapy did not improve global LVEF measured by MUGA at 6-month follow-up. CONCLUSIONS: These data indicate that implantation of myoblasts in patients with HF is feasible, appears to be safe and may provide symptomatic relief, though no significant effect was detected on global LVEF

    Accelerated vascular repair following percutaneous coronary intervention by capture of endothelial progenitor cells promotes regression of neointimal growth at long term follow-up: final results of the Healing II trial using an endothelial progenitor cell capturing stent (Genous R stent)

    No full text
    Aims: The study sought to define the long-term angiographic and clinical outcome of a bio-engineered stent, able to sequester endothelial progenitor cells (EPC) to the stent to promote the post-stenting vascular repair response.Methods and results: The HEALING-II was a multicentre, prospective registry, including 63 patients treated with the implantation of a Genous EPC capture stent. Serial quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) analysis was performed at 6 and 18 month. The 18 month composite MACE rate was 7.9%, whereas 6.3% clinically justified target lesion revascularisations were observed. Although patients received one month of clopidogrel, no (sub)acute or late angiographic stent thrombosis occurred. At 6 month follow-up, in-stent late luminal loss was 0.78+/-0.39 mm and percent in-stent volume obstruction was 22.9+/-13.7% (mean+/-sd). Serial angiographic and IVUS analyses were available in 30 event-free patients at post-procedure, 6 months and 18 months. From 6 months to 18 months follow-up, a significant late regression of neointimal hyperplasia was observed on QCA (late luminal loss 0.59+/-0.31, 24.4% reduction or 16.9% by matched serial analysis) and IVUS (percent in-stent volume obstruction 20.3+/-14.3%, 11.4% reduction or 9.6% by matched serial analysis). The relative increase in circulating EPC titers at long-term follow-up correlated with neointimal compaction in individual patients, suggestive of an EPC-mediated vascular repair response.Conclusions: The HEALING II study suggests that the EPC capture stent, aimed to stimulate the coronary vascular repair response, significantly promotes late regression of neointimal hyperplasia up to 18 months after stent implantatio
    corecore