566 research outputs found

    Improved Turn-on Characteristics of Fast High Current Thyristors

    Get PDF
    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCTs), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an important reverse current during a short period. This eliminates the need for an anti-parallel diode stack in the final switch. Extrapolation of the test results onto the final switch result in a turn-on delay of 600 ns and 6 J total conduction losses from turn-on to 20 kA peak current. Further tests on the GPS FHCT at 4.4 kV, 60 kA peak current and a repetition rate of 10 s resulted in a di/dt of 50 kA/ms with a turn-on delay of 700 ns. These encouraging results, obtained with a slightly modified standard device and based on several hundred thousand discharges, open a wide field of fast high current, high voltage applications where presently thyratrons and ignitrons are used

    Weak nonlinearity for strong nonnormality

    Full text link
    We propose a theoretical approach to derive amplitude equations governing the weakly nonlinear evolution of nonnormal dynamical systems, when they experience transient growth or respond to harmonic forcing. This approach reconciles the nonmodal nature of these growth mechanisms and the need for a center manifold to project the leading-order dynamics. Under the hypothesis of strong nonnormality, we take advantage of the fact that small operator perturbations suffice to make the inverse resolvent and the inverse propagator singular, which we encompass in a multiple-scale asymptotic expansion. The methodology is outlined for a generic nonlinear dynamical system, and two application cases highlight two common nonnormal mechanisms in hydrodynamics: the flow past a backward-facing step, subject to streamwise convective nonnormal amplification, and the plane Poiseuille flow, subject to lift-up nonnormality.Comment: 19 pages, 8 figure

    Upgrading the Fast Extractions Kicker System in SPS LSS6

    Get PDF
    A fast extraction system, located in the LSS6 region of the CERN SPS accelerator, transfers 450 GeV/c protons, as well as ions, via the TI 2 transfer line towards the LHC. The system includes three travelling wave kicker magnets, all powered in series, energised by a single Pulse Forming Network (PFN) and terminated by a short circuit. The specification for the system requires a kick flattop of 7.8μ7.8 \mus with a ripple of not more than ±0.5%. Recent measurements with beam show that the ±0.5% kick specification is achieved over 7.1μ7.1 \mus of the kick flattop; however the ripple over 7.8μ7.8 \mus is ±0.75%. Initial electrical measurements have been carried out on each of the three magnets; more detailed comparisons of the beam measurements and the contribution of each magnet to the detailed shape of the flattop kick will be carried out. This paper reports the results of initial measurements and plans for future measurements to permit modifications to the PFN for reducing flattop ripple

    « Un livre pour deux frères… » : l’exemplaire Arnauld de l’édition originale des Pensées de Pascal (1670)

    Get PDF
    Monument de la littérature classique française, œuvre philosophique majeure, les Pensées de Pascal sont, depuis toujours, un ouvrage particulièrement recherché des bibliophiles, un de ces quelques titres mythiques que tout collectionneur rêve, tôt ou tard, de posséder. Les bibliographes de la fin du XIXe siècle, et tout spécialement Jules Le Petit, ont éclairci les derniers mystères qui entouraient la question de la véritable « originale » des Pensées, en corrigeant l’erreur, reprise par Jacq..

    Wideband current transformers for the surveillance of the beam extraction kicker system of the Large Hadron Collider

    Get PDF
    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. A separate high voltage pulse generator powers each magnet. Because of the high beam energy and the consequences which could result from significant beam loss due to a malfunctioning of the dump system the magnets and generators are continuously surveyed in order to generate a beam abort as soon as an internal fault is detected. Amongst these surveillance systems, wideband current transformers have been designed to detect any erratic start in one of the generators. Output power should be enough to directly re-trigger all the power trigger units of the remaining 14 generators. The current transformers were developed in collaboration with industry. To minimize losses, high-resistivity cobalt alloy was chosen for the cores. The annealing techniques originally developed for LEP beam current measurement in collaboration between CERN and industry allowed to extend the frequency response beyond that of traditional core materials. The paper shows the results obtained, exposes the problems encountered with shielding, conductor position sensitivity, load resistor technology and their solutions. The know-how acquired during the collaboration was further applied by the industrial partner to cover a wider range of sensitivity, size and frequency

    High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    Get PDF
    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line

    The Beam Screen for the LHC Injection Kicker Magnets

    Get PDF
    The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour
    corecore