12 research outputs found
An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer's disease
Mutations leading to premature termination codons in ATP-Binding Cassette Subfamily A Member 7 (ABCA7) are high penetrant risk factors of Alzheimer's disease (AD). The influence of other genetic variants in ABCA7 and downstream functional mechanisms, however, is poorly understood. To address this knowledge gap, we investigated tandem repetitive regions in ABCA7 in a Belgian cohort of 1529 AD patients and control individuals and identified an intronic variable number tandem repeat (VNTR). We observed strong association between VNTR length and a genome-wide associated signal for AD in the ABCA7 locus. Expanded VNTR alleles were highly enriched in AD patients [odds ratio = 4.5 (1.3-24.2)], and VNTR length inversely correlated with amyloid beta(1-42) in cerebrospinal fluid and ABCA7 expression. In addition, we identified three novel ABCA7 alternative splicing events. One isoform in particular-which is formed through exon 19 skipping-lacks the first nucleotide binding domain of ABCA7 and is abundant in brain tissue. We observed a tight correlation between exon 19 skipping and VNTR length. Our findings underline the importance of studying repetitive DNA in complex disorders and expand the contribution of genetic and transcript variation in ABCA7 to AD
A deep dive into Alzheimer risk gene ABCA7 : elucidating the underlying pathomechanisms of ABCA7 mutation carriers
Abstract: Alzheimer\u2019s disease (AD) is the leading cause of dementia and a growing problem worldwide. ABCA7 was identified as a risk gene for AD in genome-wide association studies (GWAS). ABCA7 is suggested to play a role in lipid metabolism, phagocytosis and amyloid pathology. Since its discovery as a risk gene for AD, several risk-increasing variants have been identified. These variants include premature termination codon (PTC) mutations, variable number of tandem repeats (VNTR) polymorphism expansion mutations and predicted pathogenic missense mutations. The aim of this thesis was to get a better insight into the underlying pathomechanisms of these ABCA7 variants. Firstly, we leveraged different transcriptomic approaches to study these mechanisms, including long-read nanopore sequencing (on brain and lymphoblastoid cell lines), single-nuclei sequencing (SNS) and spatial sequencing on brain of AD patients and controls with ABCA7 PTC, missense and/or VNTR mutations. Our data suggest a high amount of splicing complexity in ABCA7 in general, with increased levels in carriers of PTC mutations. NMD escape and rescue splice events, able to rescue the effect of the mutation, were identified but did not alter phenotype or age at onset, though rescue splicing did impact gene expression. Both single-nuclei and spatial sequencing methods suggested neurons to be the main expressor of ABCA7 but using SNS we found average ABCA7 expression was not highest in the excitatory neurons, but in microglia. Remarkably, mutation carriers who were theoretically expected to have lower ABCA7 expression levels, had highest expression in microglia, suggesting a specific upregulation in this cell type. Of interest, we identified several differentially expressed genes between carrier and non-carrier AD patients in microglia, and pathway analysis in microglia suggested downregulation of translation and inflammatory reaction terms compared to non-carriers. Spatial analysis of the brain additionally put the choroid plexus forward as a region of interest due to its high ABCA7 expression. Finally, we performed cerebrospinal fluid (CSF) biomarker analysis on PTC and VNTR carriers suggesting altered APP processing in VNTR, and to lesser extent, PTC carriers. Moreover, decreased YKL-40 levels in expansion carriers suggested that these patients potentially have a reduced inflammatory response to AD damage. In conclusion, this thesis provided further insight into possible pathomechanisms in the different mutation groups and suggested these might not be the same in all three. These findings could eventually aid in identifying the correct treatment for AD patients carrying an ABCA7 variant
The ABC's of Alzheimer risk gene ABCA7
Abstract: Alzheimer's disease (AD) is a growing problem worldwide. Since ABCA7's identification as a risk gene, it has been extensively researched for its role in the disease. We review its recently characterized structure and what the mechanistic insights teach us about its function. We furthermore provide an overview of identified ABCA7 mutations, their presence in different ancestries and protein domains and how they might cause AD. For ABCA7 PTC variants and a VNTR expansion, haploinsufficiency is proposed as the most likely mode-of-action, although splice events could further influence disease risk. Overall, the need to better understand expression of canonical ABCA7 and its isoforms in disease is indicated. Finally, ABCA7's potential functions in lipid metabolism, phagocytosis, amyloid deposition, and the interplay between these three, is described. To conclude, in this review, we provide a comprehensive overview and discussion about the current knowledge on ABCA7 in AD, and what research questions remain. Highlights Alzheimer's risk-increasing variants in ABCA7 can be found in up to 7% of AD patients. We review the recently characterized protein structure of ABCA7. We present latest insights in genetics, expression patterns, and functions of ABCA7
CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response
Abstract: Background The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers.Methods The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of A beta(1-42), A beta(1-40), P-tau(181), T-tau, sAPP alpha, sAPP beta, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the A beta ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates.Results Carriers of ABCA7 expansion mutations had significantly lower A beta(1-42) levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE epsilon 4-negative carriers. In addition, VNTR expansion carriers had reduced A beta(1-40) (P = 0.023), sAPP alpha (P = 0.047), sAPP beta (P = 0.016), and YKL-40 (P = 0.0036) levels.Conclusions Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers
Scywalker : scalable end-to-end data analysis workflow for long-read single-cell transcriptome sequencing
Motivation: Existing nanopore single-cell data analysis tools showed severe limitations in handling current data sizes.
Results: We introduce scywalker, an innovative and scalable package developed to comprehensively analyze long-read sequencing data of full-length single-cell or single-nuclei cDNA. We developed novel scalable methods for cell barcode demultiplexing and single-cell isoform calling and quantification and incorporated these in an easily deployable package. Scywalker streamlines the entire analysis process, from sequenced fragments in FASTQ format to demultiplexed pseudobulk isoform counts, into a single command suitable for execution on either server or cluster. Scywalker includes data quality control, cell type identification, and an interactive report. Assessment of datasets from the human brain, Arabidopsis leaves, and previously benchmarked data from mixed cell lines demonstrate excellent correlation with short-read analyses at both the cell-barcoding and gene quantification levels. At the isoform level, we show that scywalker facilitates the direct identification of cell-type-specific expression of novel isoforms.
Availability and implementation: Scywalker is available on github.com/derijkp/scywalker under the GNU General Public License (GPL) and at https://zenodo.org/records/13359438/files/scywalker-0.108.0-Linux-x86_64.tar.gz
Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials
Background Quinquennial overviews (1985-2000) of the randomised trials in early breast cancer have assessed the 5-year and 10-year effects of various systemic adjuvant therapies on breast cancer recurrence and survival. Here, we report the 10-year and 15-year effects. Methods Collaborative meta-analyses were undertaken of 194 unconfounded randomised trials of adjuvant chemotherapy or hormonal therapy that began by 1995. Many trials involved CMF (cyclophosphamide, methotrexate, fluorouracil), anthracycline-based combinations such as FAC (fluorouracil, doxombicin, cyclophosphamide) or FEC (fluorouracil, epirubicin, cyclophosphamide), tamoxifen, or ovarian suppression: none involved taxanes, trastuzumab, raloxifene, or modem aromatase inhibitors. Findings Allocation to about 6 months of anthracycline-based polychemotherapy (eg, with FAC or FEC) reduces the annual breast cancer death rate by about 38% (SE 5) for women younger than 50 years of age when diagnosed and by about 20% (SE 4) for those of age 50-69 years when diagnosed, largely irrespective of the use of tamoxifen and of oestrogen receptor (ER) status, nodal status, or other tumour characteristics. Such regimens are significantly (2p=0 . 0001 for recurrence, 2p<0 . 00001 for breast cancer mortality) more effective than CMF chemotherapy. Few women of age 70 years or older entered these chemotherapy trials. For ER-positive disease only, allocation to about 5 years of adjuvant tamoxifen reduces the annual breast cancer death rate by 31% (SE 3), largely irrespective of the use of chemotherapy and of age (<50, 50-69, &GE; 70 years), progesterone receptor status, or other tumour characteristics. 5 years is significantly (2p<0 . 00001 for recurrence, 2p=0 . 01 for breast cancer mortality) more effective than just 1-2 years of tamoxifen. For ER-positive tumours, the annual breast cancer mortality rates are similar during years 0-4 and 5-14, as are the proportional reductions in them by 5 years of tamoxifen, so the cumulative reduction in mortality is more than twice as big at 15 years as at 5 years after diagnosis. These results combine six meta-analyses: anthracycline-based versus no chemotherapy (8000 women); CMF-based versus no chemotherapy (14 000); anthracycline-based versus CMF-based chemotherapy (14 000); about 5 years of tamoxifen versus none (15 000); about 1-2 years of tamoxifen versus none (33 000); and about 5 years versus 1-2 years of tamoxifen (18 000). Finally, allocation to ovarian ablation or suppression (8000 women) also significantly reduces breast cancer mortality, but appears to do so only in the absence of other systemic treatments. For middle-aged women with ER-positive disease (the commonest type of breast cancer), the breast cancer mortality rate throughout the next 15 years would be approximately halved by 6 months of anthracycline-based chemotherapy (with a combination such as FAC or FEC) followed by 5 years of adjuvant tamoxifen. For, if mortality reductions of 38% (age <50 years) and 20% (age 50-69 years) from such chemotherapy were followed by a further reduction of 31% from tamoxifen in the risks that remain, the final mortality reductions would be 57% and 45%, respectively (and, the trial results could well have been somewhat stronger if there had been full compliance with the allocated treatments). Overall survival would be comparably improved, since these treatments have relatively small effects on mortality from the aggregate of all other causes. Interpretation Some of the widely practicable adjuvant drug treatments that were being tested in the 1980s, which substantially reduced 5-year recurrence rates (but had somewhat less effect on 5-year mortality rates), also substantially reduce 15-year mortality rates. Further improvements in long-term survival could well be available from newer drugs, or better use of older drugs
Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials
Background In early breast cancer, variations in local treatment that substantially affect the risk of locoregional
recurrence could also affect long-term breast cancer mortality. To examine this relationship, collaborative metaanalyses
were undertaken, based on individual patient data, of the relevant randomised trials that began by 1995.
Methods Information was available on 42 000 women in 78 randomised treatment comparisons (radiotherapy vs no
radiotherapy, 23 500; more vs less surgery, 9300; more surgery vs radiotherapy, 9300). 24 types of local treatment
comparison were identified. To help relate the effect on local (ie, locoregional) recurrence to that on breast cancer
mortality, these were grouped according to whether or not the 5-year local recurrence risk exceeded 10% (�10%,
17 000 women; �10%, 25 000 women).
Findings About three-quarters of the eventual local recurrence risk occurred during the first 5 years. In the
comparisons that involved little (�10%) difference in 5-year local recurrence risk there was little difference in
15-year breast cancer mortality. Among the 25 000 women in the comparisons that involved substantial (�10%)
differences, however, 5-year local recurrence risks were 7% active versus 26% control (absolute reduction 19%), and
15-year breast cancer mortality risks were 44·6% versus 49·5% (absolute reduction 5·0%, SE 0·8, 2p�0·00001).
These 25 000 women included 7300 with breast-conserving surgery (BCS) in trials of radiotherapy (generally just to
the conserved breast), with 5-year local recurrence risks (mainly in the conserved breast, as most had axillary
clearance and node-negative disease) 7% versus 26% (reduction 19%), and 15-year breast cancer mortality risks
30·5% versus 35·9% (reduction 5·4%, SE 1·7, 2p=0·0002; overall mortality reduction 5·3%, SE 1·8, 2p=0·005).
They also included 8500 with mastectomy, axillary clearance, and node-positive disease in trials of radiotherapy
(generally to the chest wall and regional lymph nodes), with similar absolute gains from radiotherapy; 5-year local
recurrence risks (mainly at these sites) 6% versus 23% (reduction 17%), and 15-year breast cancer mortality risks
54·7% versus 60·1% (reduction 5·4%, SE 1·3, 2p=0·0002; overall mortality reduction 4·4%, SE 1·2, 2p=0·0009).
Radiotherapy produced similar proportional reductions in local recurrence in all women (irrespective of age or
tumour characteristics) and in all major trials of radiotherapy versus not (recent or older; with or without systemic
therapy), so large absolute reductions in local recurrence were seen only if the control risk was large.
To help assess the life-threatening side-effects of radiotherapy, the trials of radiotherapy versus not were combined
with those of radiotherapy versus more surgery. There was, at least with some of the older radiotherapy regimens, a
significant excess incidence of contralateral breast cancer (rate ratio 1·18, SE 0·06, 2p=0·002) and a significant
excess of non-breast-cancer mortality in irradiated women (rate ratio 1·12, SE 0·04, 2p=0·001). Both were slight
during the first 5years, but continued after year 15. The excess mortality was mainly from heart disease (rate ratio
1·27, SE 0·07, 2p=0·0001) and lung cancer (rate ratio 1·78, SE 0·22, 2p=0·0004).
Interpretation In these trials, avoidance of a local recurrence in the conserved breast after BCS and avoidance of a
local recurrence elsewhere (eg, the chest wall or regional nodes) after mastectomy were of comparable relevance to
15-year breast cancer mortality. Differences in local treatment that substantially affect local recurrence rates would,
in the hypothetical absence of any other causes of death, avoid about one breast cancer death over the next 15years
for every four local recurrences avoided, and should reduce 15-year overall mortality