1,687 research outputs found
The rise of goods-market competition and the fall of nominal wage contracting: endogenous wage contracting in a multisector economy
This paper shows how heterogeneity wage-setting and a link between nominal wage flexibility andg goods-market competition rise in a multisector economy that is affected by aggregate and sector-specific shocks. Aggregate volatility increases the variance of real contract wages, whereas sectoral volatility increase the relative variance of real Walrasian wages. Given this tradeoff, the prevalence of nominal wage contracting reflects both the relative volatility of aggregate versus sectoral disturbances and the overall degree of goods-market market competition. We find that these variables help explain the decline in unionization (a proxy for contracting in) the United States.Markets ; Wages
Recommended from our members
Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments
TGases (transglutaminases) are a class of calcium-dependent enzymes that catalyse the interactions between acyl acceptor glutamyl residues and amine donors, potentially making crosslinks between proteins. To assess the activity of apple (Malus domestica) pollen TGase on the functional properties of actin and tubulin, TGase was prepared from apple pollen by hydrophobic interaction chromatography and assayed on actin and tubulin purified from the same cell type. The enzyme catalysed the incorporation of putrescine in the cytoskeleton monomers. When tested on actin filaments, pollen TGase induced the formation of high-molecular-mass aggregates of actin. Use of fluorescein– cadaverine showed that the labelled polyamine was incorporated into actin by pollen TGase, similar to with guinea pig liver TGase. The pollen TGase also reduced the enzyme activity and the binding of myosin to TGase-treated actin filaments. Polymerization of tubulin in the presence of pollen TGase also yielded the formation of high molecular mass aggregates. Furthermore, the pollen TGase also affected the binding of kinesin to microtubules and reduced the motility of microtubules along kinesincoated slides. These results indicate that the pollen tube TGase can control different properties of the pollen tube cytoskeleton (including the ability of actin and tubulin to assemble and their interaction with motor proteins) and consequently regulate the development of pollen tubes
Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability
The fossil fuel society is facing environmental, socio-economic, and geopolitical issues [...
Higgs + 2 jets via gluon fusion
Real emission corrections to gg -> H, which lead to H+2 jet events, are
calculated at order alpha_s^4. Contributions include top-quark triangles, boxes
and pentagon diagrams and are evaluated analytically for arbitrary top mass
m_t. This new source of H+2 jet events is compared to the weak-boson fusion
cross section for a range of Higgs boson masses. The heavy top-mass
approximation appears to work well for intermediate Higgs-boson masses,
provided that the transverse momenta of the final-state partons are smaller
than the top-quark mass.Comment: 8 pages, 3 figure
Kinematical Limits on Higgs Boson Production via Gluon Fusion in Association with Jets
In this paper, we analyze the high-energy limits for Higgs boson plus two jet
production. We consider two high-energy limits, corresponding to two different
kinematic regions: a) the Higgs boson is centrally located in rapidity between
the two jets, and very far from either jet; b) the Higgs boson is close to one
jet in rapidity, and both of these are very far from the other jet. In both
cases the amplitudes factorize into impact factors or coefficient functions
connected by gluons exchanged in the t channel. Accordingly, we compute the
coefficient function for the production of a Higgs boson from two off-shell
gluons, and the impact factors for the production of a Higgs boson in
association with a gluon or a quark jet. We include the full top quark mass
dependence and compare this with the result obtained in the large top-mass
limit.Comment: 35 pages, 6 figure
Empathes: A general code for nudged elastic band transition states search
An easy and flexible interface, Empathes (Extensible Minimum PATH EStimator), that allows to perform Nudged Elastic Band calculation for the determination of transition states is presented. The code is designed to be easily modified, in order to be associated with the user's preferred calculation software, even with those which implement composite approaches. In particular, the interfaces to Gaussian and Siesta programs are discussed in details, being the former only used for testing purpose, while the latter can be productively employed for transition states search with that commonly used density functional theory software for periodic calculations. Program summary: Program Title: Empathes CPC Library link to program files: https://doi.org/10.17632/v525mwf3cc.1 Developer's repository link: https://github.com/marberti/empathes Code Ocean capsule: https://codeocean.com/capsule/2394233 Licensing provisions: GPLv3 Programming language: Fortran 08 Nature of problem: The search for the structure of transition states through computational methods, essentially based on Density Functional Theory, is of overwhelming importance for the determination of the elementary steps forming a reaction mechanism. Allowing to develop basic knowledge, these investigations can be used to direct experimentalists towards a more efficient realization of chemical compounds synthetic processes. In cases where it is necessary to describe the reactive system through periodic calculations, which is very common in heterogeneous catalysis, this research must be done through the use of non-analytical methods. Solution method: In case of lacking of analytical procedures, the search for the transition states associated with the elementary stages that make up chemical reactions must take place through numerical methods. The Nudged Elastic Band (NEB) approach is, together with its variants, one of the most used for this purpose. In accordance with the NEB algorithm, a chain of geometric structures, generated by interpolating between the reactant and product geometries and joined by fictitious springs, is relaxed on the minimum energy path, allowing the association of the transition state to the maximum along this path. The NEB method involves the determination of molecular energies and forces acting on the nuclei of the system, which is generally carried out through a program for electronic structure calculation. The present code is a useful general interface
- …