29 research outputs found

    ΠΠžΠ’Π«Π™ РЕАГЕНВ Π”Π›Π― ΠœΠ•Π§Π•ΠΠ˜Π― Π‘Π•Π›ΠšΠžΠ’ ИОНАМИ Π Π•Π”ΠšΠžΠ—Π•ΠœΠ•Π›Π¬ΠΠ«Π₯ ΠœΠ•Π’ΠΠ›Π›ΠžΠ’

    Get PDF
    Activated ester of a carboxylic derivative of europium diethylenetriaminetetraacetate has been synthesized by the interaction of europium salt of diethylenetriaminepentaacetic acid aminoethylamide with di-N-succinimidyl-p-phthalate. This reagent was applied to introduce rare earth metal ions in animal immunoglobulins (monoclonal antibodies). The proteins labelled with Eu3+ provide the required characteristics of fluorescence intensity, background, sensitivity and selectivity in diagnostic systems of lanthanide immunofluorometric assay.ВзаимодСйствиСм Π΅Π²Ρ€ΠΎΠΏΠΈΠ΅Π²ΠΎΠΉ соли 2-аминоэтиламида диэтилСнтриаминпСнтауксусной кислоты с Π΄ΠΈ-N-сукцинимидным эфиром n-Ρ„Ρ‚Π°Π»Π΅Π²ΠΎΠΉ кислоты ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ эфир карбоксипроизводного диэтилСнтриаминтСтраацСтата Свропия. Π­Ρ‚ΠΎΡ‚ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ использован для ввСдСния ΠΈΠΎΠ½ΠΎΠ² Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² структуру ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». Π‘Π΅Π»ΠΊΠΈ, ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅ Eu3 +, обСспСчивали Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ характСристики интСнсивности флуорСсцСнции, Ρ„ΠΎΠ½Π°, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ спСцифичности Π² мСдицинских диагностичСских Π½Π°Π±ΠΎΡ€Π°Ρ… Π»Π°Π½Ρ‚Π°Π½ΠΈΠ΄Π½ΠΎΠ³ΠΎ иммунофлуоримСтричСского Π°Π½Π°Π»ΠΈΠ·Π°

    Integrative Analysis of Harpacticoid Copepod Fauna (Harpacticoida, Copepoda) in the South of Krasnoyarsk Krai: in Several Ergaki Nature Park Waterbodies and the Yenisei River

    Get PDF
    Π€Π°ΡƒΠ½Π° Harpacticoida Π‘ΠΈΠ±ΠΈΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° нСдостаточно. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдован состав Ρ„Π°ΡƒΠ½Ρ‹ этих Ρ€Π°ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ² Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€ΠΊΠ° Β«Π•Ρ€Π³Π°ΠΊΠΈΒ» ΠΈ Ρ€Π΅ΠΊΠΈ ЕнисСй Π² Ρ‡Π΅Ρ€Ρ‚Π΅ Π³ΠΎΡ€ΠΎΠ΄Π° ΠšΡ€Π°ΡΠ½ΠΎΡΡ€ΡΠΊΠ°, прСдставлСны Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² ΠΈ ΠΈΡ… гСнСтичСским Π±Π°Ρ€ΠΊΠΎΠ΄Π°ΠΌ – Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΌΡ‚Π”ΠΠš БОI. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдований Π² июлС 2021 Π³. Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠΌ ΠΏΠ°Ρ€ΠΊΠ΅ Β«Π•Ρ€Π³Π°ΠΊΠΈΒ» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ ΡˆΠ΅ΡΡ‚ΡŒ Π²ΠΈΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² Ρ€Π°ΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² Pesceus, Bryocamptus, Maraenobiotus, Attheyella ΠΈ Moraria; Π² ЕнисСС Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ Maraenobiotus ΠΈ Moraria, Π° Ρ‚Π°ΠΊΠΆΠ΅ Harpacticella inopinata. ВсС таксоны ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… своих извСстных Π°Ρ€Π΅Π°Π»ΠΎΠ². Для пяти ΠΈΠ· Π½ΠΈΡ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ гСнСтичСскиС Π±Π°Ρ€ΠΊΠΎΠ΄Ρ‹, всСго 25 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. ЀилогСнСтичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ» Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ H. inopinata ΠΈ Attheyella nordenskioldii юга ΠšΡ€Π°ΡΠ½ΠΎΡΡ€ΡΠΊΠΎΠ³ΠΎ края ΠΈ ΠΎΠ·Π΅Ρ€Π° Π‘Π°ΠΉΠΊΠ°Π» (гСнСтичСскиС дистанции 0,014–0,036), Π° Ρ‚Π°ΠΊΠΆΠ΅ молСкулярно-Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ, Π½ΠΎ Π½Π΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ, ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ Maraenobiotus insignipes insignipes Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ² Ρ€Π΅Π³ΠΈΠΎΠ½Π° исслСдований (ΠΏΠΎΠΏΠ°Ρ€Π½Ρ‹Π΅ гСнСтичСскиС дистанции Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»ΠΈ 0,008). Π­Ρ‚ΠΎΡ‚ Π²ΠΈΠ΄ Π±Ρ‹Π» Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнным Π½Π° югС ΠšΡ€Π°ΡΠ½ΠΎΡΡ€ΡΠΊΠΎΠ³ΠΎ края. БубэндСмик ΠΎΠ·Π΅Ρ€Π° Π‘Π°ΠΉΠΊΠ°Π» H. inopinata Π±Ρ‹Π» зарСгистрирован Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ЕнисСС. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‚ прСдставлСния ΠΎ фаунистичСском, морфологичСском ΠΈ гСнСтичСском Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠΈ Harpacticoida Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π²ΠΎΠ΄ Π‘ΠΈΠ±ΠΈΡ€ΠΈThe crustacean fauna of Siberia, in particular the Harpacticoida, has not been studied sufficiently. For the first time, the composition of harpacticoid copepod fauna in several waterbodies in the Ergaki Nature Park and the Yenisei River near the city of Krasnoyarsk is examined, and the data on the morphology and genetic barcodes (nucleotide sequences of the mtDNA fragment COI) of the species and subspecies found are presented. In July 2021, six species and subspecies of harpacticoids of the Pesceus, Bryocamptus, Maraenobiotus, Attheyella and Moraria genera were found in the Ergaki Nature Park; Maraenobiotus, Moraria and Harpacticella inopinata were found in the Yenisei River. All taxa were found within the known distribution ranges. For five of them, genetic barcodes were obtained, a total of 25 sequences. A phylogenetic analysis confirmed the genetic closeness of H. inopinata and Attheyella nordenskioldii in the south of Krasnoyarsk Krai and Lake Baikal (genetic distances were 0.014–0.036), as well as molecular-genetic, but not morphological, homogeneity of Maraenobiotus insignipes insignipes from several waterbodies in the study site (pairwise genetic distances did not exceed 0.008). The latter species has been found the most common in the south of Krasnoyarsk Krai. H. inopinata, a subendemic of Lake Baikal, has been registered in the Yenisei River only. The data obtained broaden understanding of taxonomic, morphological and genetic diversity of the Harpacticoida fauna in Siberia’s inland water

    Π˜ΠœΠœΠ£ΠΠžΠ€Π•Π ΠœΠ•ΠΠ’ΠΠ«Π™ ΠΠΠΠ›Π˜Π— Π€Π£ΠœΠžΠΠ˜Π—Π˜ΠΠžΠ’ Π“Π Π£ΠŸΠŸΠ« Π’ Π’ КОРМАΠ₯ И ΠŸΠ˜Π©Π•Π’Π«Π₯ ΠŸΠ ΠžΠ”Π£ΠšΠ’ΠΠ₯

    Get PDF
    A reagent kit EIA-FUMONISIN for the determination of mycotoxins of fumonisin B group in feeds and foods by a direct competitive enzyme immunoassay using microtitration plate has been developed and tested. The evaluated technicoanalytical parameters of the kit and metrological characteristics of the technique of measurements correspond to the mo- dern level of immunoassay development and provide the determination of fumonisin group B content of agricultural products in a range of 0.11 to 6.0 mg/kg with proper accuracy and precision.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΈ ΠΏΡ€ΠΎΡˆΠ΅Π» Π²Π½ΡƒΡ‚Ρ€ΠΈΠ»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ испытания Π½Π°Π±ΠΎΡ€ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² ИЀА-Π€Π£ΠœΠžΠΠ˜Π—Π˜Π для опрСдСлСния микотоксинов, относящихся ΠΊ Ρ„ΡƒΠΌΠΎΠ½ΠΈΠ·ΠΈΠ½Π°ΠΌ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π’, Π² ΠΊΠΎΡ€ΠΌΠ°Ρ… ΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прямого ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (ИЀА). Π’ состав Π½Π°Π±ΠΎΡ€Π° входят Ρ€Π°Π·Π±ΠΎΡ€Π½Ρ‹ΠΉ ΠΌΠΈΠΊΡ€ΠΎΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚, Π² Π»ΡƒΠ½ΠΊΠ°Ρ… ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ биоспСцифичСски ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ моноклональноС Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎ, Π³ΠΎΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΊ использованию раствор ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚Π° Ρ„ΡƒΠΌΠΎΠ½ΠΈΠ·ΠΈΠ½Π° Π’1 с пСроксидазой ΠΈΠ· ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ…Ρ€Π΅Π½Π°, Π³Ρ€Π°Π΄ΡƒΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅ растворы, раствор Ρ…Ρ€ΠΎΠΌΠΎΠ³Π΅Π½Π° (Π’ΠœΠ‘), субстратный раствор (ΠΈΠ»ΠΈ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΊ использованию Ρ…Ρ€ΠΎΠΌΠΎΠ³Π΅Π½-субстратный раствор) ΠΈ стоп-Ρ€Π΅Π°Π³Π΅Π½Ρ‚. УстановлСнныС Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-аналитичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π½Π°Π±ΠΎΡ€Π° ΠΈ мСтрологичСскиС характСристики ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ выполнСния ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ соврСмСнному ΡƒΡ€ΠΎΠ²Π½ΡŽ развития ИЀА ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ с Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ содСрТаниС Ρ„ΡƒΠΌΠΎΠ½ΠΈΠ·ΠΈΠ½ΠΎΠ² Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ 0,11 Π΄ΠΎ 6,0 ΠΌΠ³/ΠΊΠ³ Π² ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ

    Data on taxa composition of freshwater zooplankton and meiobenthos across Arctic regions of Russia

    No full text
    We present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995–2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s. The list is almost identical to β€œDataset 2: Zooplankton and Meiofauna across Arctic Regions of Russia”, which was analyzed but not published in [1]. The detailed analysis of this list revealed the specific composition of the aquatic fauna associated with the climatic and geographical factors [1]. The data provide information on the current state of biodiversity and species richness in Arctic fresh waters and can serve as the basis for monitoring these environments and predicting how they are likely to change in the future

    Secondary production of highly unsaturated fatty acids by zoobenthos across rivers contrasting in temperature

    Get PDF
    Highly unsaturated fatty acids (HUFA), namely eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), which are essential for many animals, including humans, are mainly produced in aquatic trophic webs. In fast-flowing rivers, macrozoobenthos is the main source of HUFA for fish and may be particularly vulnerable to thermal alterations associated with climate change. We studied benthic communities in a unique natural ecosystem: the Yenisei River downstream of the dam of Krasnoyarsk Hydroelectric Power Station with very low temperature in summer because of discharge of cold water from deep in the reservoir and its tributaries with high summer temperature. This β€˜natural experiment’ allowed to get rid of confounding factors, such as differences in light, seasonality, geology (biogeochemistry) and biogeography (regional species pools). As found, in spite of an increase of biodiversity and rates of daily production in warm rivers compared with cold sites, DHA and partly EPA production of zoobenthos decreased with the increase of temperature because of changes in species composition. Thus, in a climate warming context, we can predict a decrease of production of these HUFA by river zoobenthos and thereby a diminishing of their supply for fish and next to humans

    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic

    No full text
    Β© 2020 John Wiley & Sons Ltd. Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos from c. 67Β° to 73Β°N by analysing data over the period 1960–2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that included Kellicottia longispina (Rotifera), Chydorus sphaericus s. lat. (Cladocera), Heterocope borealis, Acanthocyclops vernalis, and Moraria duthiei (Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and Ξ²-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest Ξ²-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates

    Numerical modeling of vertical distribution of living and dead copepods Arctodiaptomus salinus in salt Lake Shira

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.Π’ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΌ стратифицированном Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ΅ процСссы роста ΠΈ смСртности популяции Π·ΠΎΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π° Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π²ΠΎ взаимозависимом Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΌ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΌ распрСдСлСнии ΠΆΠΈΠ²Ρ‹Ρ… ΠΈ ΠΌΠ΅Ρ€Ρ‚Π²Ρ‹Ρ… особСй Π² столбС Π²ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ€Ρ‚Π²Ρ‹Π΅ особи ΡΠ»ΠΈΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΈΠ· Ρ‚ΠΎΠ»Ρ‰ΠΈ Π²ΠΎΠ΄Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ осСдания, Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π·Π° счСт ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ разлоТСния, Π΄Π΅Ρ‚Ρ€ΠΈΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ ΠΈ Ρ‚. Π΄. Π’ случаС эпилимниального максимума числСнности Π·ΠΎΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π° ΠΈ ΠΏΡ€ΠΈ условии прСобладания процСссов Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π½Π°Π΄ осСданиСм, ΠΏΠΎΡ‚ΠΎΠΊ ΠΎΡ‚ΠΌΠΈΡ€Π°ΡŽΡ‰ΠΈΡ… особСй ΠΈΠΌΠ΅Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ с Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ. ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒ числСнности ΠΌΠ΅Ρ€Ρ‚Π²Ρ‹Ρ… Ρ€Π°Ρ‡ΠΊΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈΡ… ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ Π² ΠΌΠ΅Ρ‚Π°- ΠΈ Π³ΠΈΠΏΠΎΠ»ΠΈΠΌΠ½ΠΈΠΎΠ½Π΅, ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ числСнной ΠΌΠΎΠ΄Π΅Π»ΠΈ. Аппроксимация ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ значСния СстСствСнной смСртности m (Π½Π΅ связанной с Ρ…ΠΈΡ‰Π½ΠΈΠΊΠΎΠΌ) ΠΈ скорости Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ D ΠΎΡ‚ΠΌΠ΅Ρ€ΡˆΠΈΡ… Ρ€Π°Ρ‡ΠΊΠΎΠ² Π² Π²ΠΈΠ΄Π΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ( m / v ΠΈ D / v , v - ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ осСдания), Π»ΠΈΠ±ΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… (ΠΏΡ€ΠΈ извСстной v ). На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ популяции ΠΊΠΎΠΏΠ΅ΠΏΠΎΠ΄ Arctodiaptomus salinus Daday Π² ΠΎΠ·. Π¨ΠΈΡ€Π° рассчитанныС m ΠΈ D (ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ 0,13 ΠΈ 0,26 сут-1 соотвСтствСнно) Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ со значСниями, извСстными ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Π°ΠΊΠΆΠ΅ являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Ρ€Π°Π·Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ осСдания v ΠΏΠΎ Π³Π»ΡƒΠ±ΠΈΠ½Π΅
    corecore