74 research outputs found
Rapid generation of stable transgenic embryonic stem cell lines using modular lentivectors
Generation of stable transgenic embryonic stem (ES) cell lines by classic transfection is still a difficult task, requiring time-consuming clonal selection, and hampered by clonal artifacts and gene silencing. Here we describe a novel system that allows construction of lentivectors and generation of stable ES cell lines with > 99% transgene expression within a very short time frame. Rapid insertion of promoters and genes of interest is obtained through a modular recombinational cloning system. Vectors contain central polypurine tract from HIV-1 element and woodchuck hepatitis virus post-transcriptional regulatory element as well as antibiotic resistance to achieve optimal and homogenous transgene expression. We show that the system 1) is functional in mouse and human ES cells, 2) allows the generation of ES cells expressing genes of interest under the control of ubiquitous or tissue-specific promoters, and 3) allows ES cells expressing two constructs through selection with different antibiotics to be obtained. The technology described herein should become a useful tool in stem cell research
Prevention of apoptotic neuronal death by controlling procaspases? A point of view
In various animal models of neurodegenerative diseases the long-lasting control of cell death by anti-apoptotic therapies is not successful. We present here our view on the control of procaspase expression in a model of cerebral stroke. We have investigated how Hu-Bcl-2 overexpression modifies cell death protein activation in a model of cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO). In wild type mice MCAO induced release of cytochrome c from the mitochondria, and activation of caspases 9 and 3. In parallel with caspases activation, procaspase 9 and procaspase 3 were, respectively, increased and decreased. In Hu-Bcl-2 transgenic mice cytochrome c release and caspases 9 and 3 activation were blocked. However procaspase 9 increased, like in wt mice, but procaspase 3 remained unchanged. By 2 weeks after MCAO caspases were no longer blocked in Hu-Bcl-2 transgenic mice. Procaspase 9 increase could represent a time bomb in Hu-Bcl-2 mice where caspase 9 activation is blocked. Indeed, cellular accumulation of procaspase 9 is a potentially harmful event able to overcome anti-apoptotic protection by Bcl-2 and threaten cells with rapid destruction. Through understanding of the upstream regulation of procaspase 9, early targets for the pharmacological control of apoptotic cell death may be revealed
Nicotinic acetylcholine receptors in neonatal motoneurons are regulated by axotomy: an electrophysiological and immunohistochemical study in human bcl-2 transgenic mice
Motoneuron axotomy was exploited as a model system for studying functional and morphological changes caused in motoneuron cell bodies by peripheral axon injury. Rodent facial motoneurons express functional nicotinic acetylcholine receptors. We have determined the effect of neonatal unilateral facial nerve transection on these receptors by using electrophysiological and immunohistochemical techniques. To avoid rapid apoptotic cell death of axotomized motoneurons, the study was done in mice overexpressing the human bcl-2 transgene. Intact motoneurons responded to acetylcholine by generating a rapidly rising inward current, which was insensitive to methyllycaconitine, a selective antagonist of alpha7-containing nicotinic receptors, but was suppressed by dihydro-beta-erythroidine, a broad-spectrum antagonist. This indicates that mouse facial motoneurons possess nicotinic receptors which are probably devoid of the alpha7 subunit. In striking contrast, axotomized motoneurons displayed little or no sensitivity to acetylcholine. Axotomy did not affect the sensitivity of facial motoneurons to the selective glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxaxolepropionic acid. Immunohistochemical studies revealed that the alpha4 nicotinic receptor subunit was present in intact motoneurons but was undetectable in axotomized motoneurons. By contrast, the beta2 subunit was comparable in intact and axotomized motoneurons. alpha3 immunoreactivity was undetectable, both in intact and in axotomized motoneurons.Thus, mouse facial nicotinic receptors are possibly of the alpha4beta2 type and axotomy interferes negatively with the expression of the alpha4 subunit. By down-regulating nicotinic receptors, peripheral nerve injury may facilitate motoneuron degeneration. Alternatively, nicotinic receptor downregulation and motoneuron degeneration may be independent consequences of peripheral axotomy
Genetic engineering of embryonic stem cells
We describe a novel generation oflentiviral vectors that are particularly well suited for work with embryonic stem cells. The possibility of selecting cell lines with antibiotics and the rapid insertion of any combination of promoters and genes of interest makes them a powerful tool in the generation of transgenic ES cell lines. This vector can also greatly facilitate studies aimed at the improvement of neuronal engineering from ES cells, by making it possible to monitor the emergence and differentiation of neurons
Genetic engineering of embryonic stem cells
We describe a novel generation oflentiviral vectors that are particularly well suited for work with embryonic stem cells. The possibility of selecting cell lines with antibiotics and the rapid insertion of any combination of promoters and genes of interest makes them a powerful tool in the generation of transgenic ES cell lines. This vector can also greatly facilitate studies aimed at the improvement of neuronal engineering from ES cells, by making it possible to monitor the emergence and differentiation of neurons
Caspase-related apoptosis in chronic ischaemic microangiopathy following experimental vein occlusion in mini-pigs
PURPOSE: Acute brain ischaemia (stroke) causes a central area of coagulation necrosis. Peripheral to it and after a few hours, apoptosis causes neurons throughout the entire area to die progressively. However, this sequence of events is related to the reperfusion of regenerated capillaries or collateral circulation, and is considered to be potentially salvageable. Similar findings have been reported in the retina after ischaemia-reperfusion injury in rats. In the present study, we intended to investigate whether delayed cell death is involved in neuronal injuries to the inner retina during chronic retinal ischaemia. METHODS: Experimental branch retinal vein occlusion (BRVO) was induced in miniature pigs using indirect argon laser. The eyes were prelevated at 4, 24 and 48 hours and at 1 and 3 weeks following BRVO. The caspase inhibitor Z-VAD was injected intravitreally 24 hours after BRVO. Affected retinas were examined 24 hours later for any protective effect from apoptotic cell death. Histological examination with cresyl violet staining and TUNEL (TdT-mediated dUTP-biotin nick-end labelling) was performed on the samples. RESULTS: A progressive oedema of the nerve fibre, ganglion cell and inner plexiform layers, related to a widely diffused cell necrosis, was observed in the affected territory within 4-24 hours after BRVO. This was followed by a wave of apoptosis localized at the periphery of the affected territory, which peaked approximately 48 hours after BRVO and was associated with a diffuse oedema of the inner nuclear layer. A progressive atrophy of the inner retina was observed 1-3 weeks after BRVO. Injection of the caspase inhibitor Z-VAD (24 hours after BRVO) decreased the amount of apoptotic cell bodies 48 hours after BRVO. CONCLUSIONS: This study shows that although necrosis is the predominant form of neuronal death in the early phase, massive delayed neuronal cell death caused by apoptosis occurs on a widespread basis as a result of chronic ischaemia after BRVO in the retina. Further studies are needed to evaluate the possibility of rescuing retinal neurons from death by neuroprotective treatments
Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: an electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus
In transverse hippocampal slices from rat and guinea pig brains, we obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 microM. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. Our results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide
Neurons in the dorsal motor nucleus of the vagus nerve are excited by oxytocin in the rat but not in the guinea pig
Intracellular recordings were obtained from vagal neurons and their response to oxytocin was investigated in slices from the rat and the guinea pig brainstem. After recording, Lucifer yellow was injected into the cells to verify their localization within the dorsal motor nucleus of the vagus nerve (dmnX). In the rat, virtually all neurons throughout the rostrocaudal extent of the dmnX increased their rate of firing in the presence of 10-1000 nM oxytocin and their membrane depolarized in a reversible concentration-dependent manner. This excitation was probably exerted directly on the impaled cells rather than being synaptically mediated, since it persisted in a low calcium/high magnesium medium or in the presence of tetrodotoxin. These data provide evidence for a direct membrane effect of oxytocin on a defined population of neurons in the rat brain. In the guinea pig, vagal neurons were fired by glutamate but were not excited by oxytocin, even though we detected many more oxytocin-immunoreactive structures in the guinea pig dmnX than in the rat dmnX. Therefore, homologous nuclei in the brains of two closely related mammals differ markedly in the density of oxytocinergic axons they contain. Unexpectedly, the magnitude of the electrophysiological effects of oxytocin on vagal neurons appeared inversely related to the amount of oxytocin-like immunoreactivity present in dmnX
- …