3 research outputs found

    Tree canopy affects soil macrofauna spatial patterns on broad- and meso- scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro

    Get PDF
    This paper tested the hypothesis that the placement of trees in the floodplain ecosystem leads to multiscale spatial structuring and plays an important role in formation of the spatial patterns of the soil macrofauna. The research polygon was laid in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. The litter macrofauna was manually collected from the soil samples. The distances of the sampling locations from the nearest individual of each tree species were applied to obtain a measure of the overstorey spatial structure. The pure effect of tree structured space on the soil animal community was presented by the broad-scale and meso-scale components. The soil animal community demonstrated patterns varying in tree structured space. The tree induced spatial heterogeneity was revealed to effect on the vertical stratification of the soil animal community. The complex nature of the soil animal community variability depending on the distance from trees was depended on the interaction of tree species in their effects on soil animals. The importance of the spatial structures that interact with soil, plants and tree factors in shaping soil macrofauna communities was shown

    Tree canopy affects soil macrofauna spatial patterns on broad- and meso- scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro

    Get PDF
    This paper tested the hypothesis that the placement of trees in the floodplain ecosystem leads to multiscale spatial structuring and plays an important role in formation of the spatial patterns of the soil macrofauna. The research polygon was laid in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. The litter macrofauna was manually collected from the soil samples. The distances of the sampling locations from the nearest individual of each tree species were applied to obtain a measure of the overstorey spatial structure. The pure effect of tree structured space on the soil animal community was presented by the broad-scale and meso-scale components. The soil animal community demonstrated patterns varying in tree structured space. The tree induced spatial heterogeneity was revealed to effect on the vertical stratification of the soil animal community. The complex nature of the soil animal community variability depending on the distance from trees was depended on the interaction of tree species in their effects on soil animals. The importance of the spatial structures that interact with soil, plants and tree factors in shaping soil macrofauna communities was shown

    The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river

    No full text
    This paper examines the role of ecological factors, derived from principal component analysis performed on edaphic and vegetational dataset as well as spatial variables, in structuring the soil macrofauna community of the Dnipro floodplain within the ‘Dnipro-Orilsky’ Nature Reserve (Ukraine). The soil macrofauna was defined as invertebrates visible to the naked eye (macroscopic organisms). The test points formed a regular grid with a mesh size of 3 m with 7 × 15 dimensions. Thus, the total test point number was 105. At each point, soil-zoological samples of 0.25 × 0.25 m were taken for quantifying the soil macrofauna. The spatial structure was modeled by a set of independent spatial patterns obtained by means of principal coordinates of neighbor matrices analysis (PCNM-variables). Spatial PCNM-variables explain significantly more variations of the community (19.9%) than edaphic factors (4.1%) and vegetation factors (3.2%). Spatial and combined environmental and spatial effects were divided into three components: broad-scale component was characterized by periodicity of spatial variation with a wavelength of 24.0–44.5 m, medium-scale – 11.1–20 m, fine-scale – 6.6–11.0 m. For a broad-scale component, environmental factors of a vegetational nature are more important, for medium-scale, edaphic factors are more important, for fine-scale, both vegetation and edaphic are important. For litter-dwelling animals, the most characteristic spatial patterns are on the broad and medium-scale levels. For endogeic and anecic animals, the most significant variability is on the fine-scale level
    corecore