30 research outputs found

    Characterization of Human Prostate-Specific Transglutamiuase

    Get PDF

    The aroA gene of Campylobacter jejuni

    Get PDF
    The gene for 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (aroA) cloned from Campylobacter jejuni (Cj) strain 81116 was identified by complementation of an Escherichia coli (Ec) auxotrophic aroA mutant. The Cj aroA gene has been sequenced. It encodes an enzyme of 428 amino acids (aa), that is homologous to other bacterial EPSP synthases, especially that of Bacillus subtilis with which it has a 39% aa identity. The transcriptional start point was mapped. It is present in an upstream open reading frame (ORF) that has a strong homology to the gene encoding phenylalanine tRNA synthetase (pheS). Downstream from aroA another ORF is present which is homologous to the lytB gene of Ec. The stop codon of the aroA gene overlaps the start codon of lytB

    Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase

    Get PDF
    Transglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP). This paper deals with the molecular cloning and characterization of the cDNA encoding the human prostate TGase (hTGP). For this purpose we have screened a human prostate cDNA library with a probe from the active-site region of TGC. The largest isolated cDNA contained an open reading frame encoding a protein of 684 amino acids with a predicted molecular mass of 77 kDa as confirmed by in vitro transcription-translation and subsequent SDS/PAGE. The hTGP gene was tissue-specifically expressed in the prostate, yielding an mRNA of approx. 3.5 kb. Furthermore, a 3-fold androgen-induced upregulation of hTGP mRNA expression has been demonstrated in the recently developed human prostate cancer cell line, PC346C. Other well established human prostate cancer cell lines, LNCaP and PC-3, showed no detectable hTGP mRNA expression on a Northern bolt. The gene coding for prostate TGase was assigned to chromosome 3

    Amino acids 3-13 and amino acids in and flanking the 23FxxLF27 motif modulate the interaction between the N-terminal and ligand-binding domain of the androgen receptor

    Get PDF
    The N-terminal domain (NTD) and the ligand-binding domain (LBD) of the androgen receptor (AR) exhibit a ligand-dependent interaction (N/C interaction). Amino acids 3-36 in the NTD (AR3-36) play a dominant role in this interaction. Previously, it has been shown that a PhixxPhiPhi motif in AR3-36, 23FxxLF27, is essential for LBD interaction. We demonstrate in the current study that AR3-36 can be subdivided into two functionally distinct fragments: AR3-13 and AR16-36. AR3-13 does not directly interact with the AR LBD, but rather contributes to the transactivation function of the AR.NTD-AR.LBD complex. AR16-36, encompassing the 23FxxLF27 motif, is predicted to fold into a long amphipathic alpha-helix. A second PhixxPhiPhi candidate protein interaction motif within the helical structure, 30VREVI34, shows no affinity to the LBD. Within AR16-36, amino acid residues in and flanking the 23FxxLF27 motif are demonstrated to modulate N/C interaction. Substitution of Q24 and N25 by alanine residues enhances N/C interaction. Substitution of amino acids flanking the 23FxxLF27 motif by alanines are inhibitory to LBD interaction

    Mitochondrial D310 mutation as clonal marker for solid tumors

    Get PDF
    Patients with multiple tumors, either synchronous or metachronous, can have metastatic disease or suffer from multiple independent primary tumors. While proper diagnosis of these patients is important for prognosis and treatment, this can be challenging using only clinical and histological criteria. The aim of the present study was to evaluate the value of mitochondrial D310 mutation analysis in diagnostic questions regarding tumor clonality for a wide range of tumor types. Sanger sequencing of D310 was performed on a diagnostic cohort of 382 patients with 857 tumors that were previously analyzed using routine molecular analysis on genomic DNA. The D310 mononucleotide repea

    MGMT promoter hypermethylation is a frequent, early, and consistent event in astrocytoma progression, and not correlated with TP53 mutation

    Get PDF
    Hypermethylation of the MGMT gene promoter and mutation of the TP53 tumor-suppressor gene are frequently present in diffuse astrocytomas. However, there is only anecdotal information about MGMT methylation status and TP53 mutations during progression of low-grade diffuse astrocytoma (AII) to anaplastic astrocytoma (AIII) and secondary glioblastoma (sGB). In this study biopsy specimens from 51 patients with astrocytic tumors with radiologically proved progression from low to high-grade malignancy were investigated for the presence and consistency of MGMT promoter hypermethylation and TP53 mutations. For 27 patients biopsy samples both of primary tumors and their recurrences were available. For the other 24 patients histology of either the low-grade lesion or the high-grade recurrence was available. It was found that MGMT promoter hypermethylation and TP53 mutations are both frequent and early events in the progression of astrocytomas and that their status is consistent over time. No correlation was found between MGMT methylation status and the presence of TP53 mutations. In addition, no correlation was found between MGMT promoter hypermethylation and the type of TP53 mutations. These results argue against the putative TP53 G:C>A:T transition mutations suggested to occur preferentially in MGMT hypermethylated tumors

    Prevalence of c-KIT Mutations in Gonadoblastoma and Dysgerminomas of Patients with Disorders of Sex Development (DSD) and Ovarian Dysgerminomas

    Get PDF
    Activating c-KIT mutations (exons 11 and 17) are found in 10-40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent ~3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY

    Functional analysis of novel androgen receptor mutations in a unique cohort of Indonesian patients with a disorder of sex development

    Get PDF
    Mutations in the androgen receptor (AR) gene, rendering the AR protein partially or completely inactive, cause androgen insensitivity syndrome, which is a form of a 46,XY disorder of sex development (DSD). We present 3 novel AR variants found in a cohort of Indonesian DSD patients: p.I603N, p.P671S, and p.Q738R. The aim of this study was to determine the possible pathogenic nature of these newly found unclassified variants. To investigate the effect of these variants on AR function, we studied their impact on transcription activation, AR ligand-binding domain interaction with an FxxLF motif containing peptide, AR subcellular localization, and AR nuclear dynamics and DNA-binding. AR-I603N had completely lost its transcriptional activity due to disturbed DNA-binding capacity and did not show the 114-kDa hyperphosphorylated AR protein band normally detectable after hormone binding. The patient with AR-I603N displays a partial androgen insensitivity syndrome phenotype, which is explained by somatic mosaicism. A strongly reduced transcriptional activity was observed for AR-Q738R, together with diminished interaction with an FxxLF motif containing peptide. AR-P671S also showed reduced transactivation ability, but no change in DNA- or FxxLF-binding capacity and interferes with transcriptional activity for as yet unclear reasons

    Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers

    Get PDF
    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AU
    corecore