853 research outputs found

    Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation

    Full text link
    We propose a convolutional network with hierarchical classifiers for per-pixel semantic segmentation, which is able to be trained on multiple, heterogeneous datasets and exploit their semantic hierarchy. Our network is the first to be simultaneously trained on three different datasets from the intelligent vehicles domain, i.e. Cityscapes, GTSDB and Mapillary Vistas, and is able to handle different semantic level-of-detail, class imbalances, and different annotation types, i.e. dense per-pixel and sparse bounding-box labels. We assess our hierarchical approach, by comparing against flat, non-hierarchical classifiers and we show improvements in mean pixel accuracy of 13.0% for Cityscapes classes and 2.4% for Vistas classes and 32.3% for GTSDB classes. Our implementation achieves inference rates of 17 fps at a resolution of 520x706 for 108 classes running on a GPU.Comment: IEEE Intelligent Vehicles 201

    A Domain Agnostic Normalization Layer for Unsupervised Adversarial Domain Adaptation

    Full text link
    We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary

    Functional Outcome of Radical Retropubic Prostatectomy: Sexual function and urinary continence

    Get PDF
    Prostate cancer is the most common non-dermatological cancer in men in the Western world. During the last 2 decades, the widespread use of early detection programs based-on prostate-specific antigen (PSA) screening has resulted in an increase of diagnosed prostate cancer. Screening of prostate cancer has resulted in a change of patient characteristics presenting with localized prostate cancer. Nowedays, men diagnosed with this disease are at a younger age, have less comorbidities and a longer life expe

    Semantic Foreground Inpainting from Weak Supervision

    Full text link
    Semantic scene understanding is an essential task for self-driving vehicles and mobile robots. In our work, we aim to estimate a semantic segmentation map, in which the foreground objects are removed and semantically inpainted with background classes, from a single RGB image. This semantic foreground inpainting task is performed by a single-stage convolutional neural network (CNN) that contains our novel max-pooling as inpainting (MPI) module, which is trained with weak supervision, i.e., it does not require manual background annotations for the foreground regions to be inpainted. Our approach is inherently more efficient than the previous two-stage state-of-the-art method, and outperforms it by a margin of 3% IoU for the inpainted foreground regions on Cityscapes. The performance margin increases to 6% IoU, when tested on the unseen KITTI dataset. The code and the manually annotated datasets for testing are shared with the research community at https://github.com/Chenyang-Lu/semantic-foreground-inpainting.Comment: RA-L and ICRA'2

    Image-Graph-Image Translation via Auto-Encoding

    Full text link
    This work presents the first convolutional neural network that learns an image-to-graph translation task without needing external supervision. Obtaining graph representations of image content, where objects are represented as nodes and their relationships as edges, is an important task in scene understanding. Current approaches follow a fully-supervised approach thereby requiring meticulous annotations. To overcome this, we are the first to present a self-supervised approach based on a fully-differentiable auto-encoder in which the bottleneck encodes the graph's nodes and edges. This self-supervised approach can currently encode simple line drawings into graphs and obtains comparable results to a fully-supervised baseline in terms of F1 score on triplet matching. Besides these promising results, we provide several directions for future research on how our approach can be extended to cover more complex imagery

    On Boosting Semantic Street Scene Segmentation with Weak Supervision

    Full text link
    Training convolutional networks for semantic segmentation requires per-pixel ground truth labels, which are very time consuming and hence costly to obtain. Therefore, in this work, we research and develop a hierarchical deep network architecture and the corresponding loss for semantic segmentation that can be trained from weak supervision, such as bounding boxes or image level labels, as well as from strong per-pixel supervision. We demonstrate that the hierarchical structure and the simultaneous training on strong (per-pixel) and weak (bounding boxes) labels, even from separate datasets, constantly increases the performance against per-pixel only training. Moreover, we explore the more challenging case of adding weak image-level labels. We collect street scene images and weak labels from the immense Open Images dataset to generate the OpenScapes dataset, and we use this novel dataset to increase segmentation performance on two established per-pixel labeled datasets, Cityscapes and Vistas. We report performance gains up to +13.2% mIoU on crucial street scene classes, and inference speed of 20 fps on a Titan V GPU for Cityscapes at 512 x 1024 resolution. Our network and OpenScapes dataset are shared with the research community.Comment: Oral presentation IEEE IV 201

    Exploiting image translations via ensemble self-supervised learning for Unsupervised Domain Adaptation

    Get PDF
    Unsupervised Domain Adaptation (UDA) aims to improve the generalization capacity of models when they are tested on a real-world target domain by learning a model on a source labeled domain. Recently, a UDA method was proposed that addresses the adaptation problem by combining ensemble learning with self-supervised learning. However, this method uses only the source domain to pretrain the model and employs a limited amount of classifiers to create target pseudo labels. To mitigate these deficiencies, in this work, we explore the usage of image translations in combination with ensemble learning and self-supervised learning. To increase the model’s exposure to more variable pretraining data, our method creates multiple diverse image translations, which encourages the learning of domain-invariant features, desired to increase generalization. With these image translations, we are able to learn translation-specific classifiers, which also allows to maximize the amount of ensemble’s classifiers resulting in more robust target pseudo labels. In addition, we propose to use the target domain in pretraining stage to mitigate source domain bias in the network. We evaluate our method on the standard UDA benchmarks, i.e., adapting GTA V and Synthia to Cityscapes, and achieve state-of-the-art results on the mIoU metric. Extensive ablation experiments are reported to highlight the advantageous properties of our UDA strategy
    • …
    corecore